

অভয়াপুৰী মহাবিদ্যালয় অভয়াপুৰী

GREEN AUDIT REPORT

2020-21

PREPARED BY GREEN AUDIT COMMITTEE, ABHAYAPURI COLLEGE

Preface

An eco-friendly campus is a concept used in educational institutions around the world to help them become more sustainable as a result of their high resource consumption and waste discharge into the environment. Waste minimization measures for educational institutes are increasingly required in order to keep the campus clean. The conduct of Green Auditing of Institutions is vital for determining the environmental performance of educational institutions and analysing feasible options for turning the educational campus into an eco-campus. The green auditing of Abhayapuri College, Abhayapuri, allows for an assessment of campus life, activities, and environmental impact.

This is the second time a green audit of this college campus has been done in this manner. This audit primarily focused on greening indicators such as drinking water quality, plant and animal vegetation, and campus waste management procedures, among others. Initially, a questionnaire survey was undertaken to learn about the campus's available resources and the students' and staffs' resource use patterns. Water samples were taken from several sites on the college campus and examined for factors in order to assess the quality of the water. The information gathered was organised, tallied, and analysed. Eventually, a report on the environmental management plan is documented, along with recommendations for the campus's environmental issues.

1st October, 2021

REMAUN

Dr. Subrata Sarkar Dr. Ashoke Kumar Das

GREEN AUDIT ABHAYAPURI COLLEGE, ABHAYAPURI

Green Audit Committee

- 1. Dr. Subrata Sarkar (Convener), Assistant Professor, Botany
- 2. Prof. Anupama Swargiary, Assistant Professor, Zoology
- 3. Dr. Ashoke Kumar Das, Assistant Professor, Botany
- Dr. Pori Devi, Assistant Professor, Zoology 4.
- Dr. Hitesh Das, Assistant Professor, Zoology 5.
- 6. Prof. Karisma Talukdar, Assistant Professor, Chemistry
- 7. Prof. Trishna Roy Prodhani, Assistant Professor, Botany EMMUT ABAMAN COLLECTION AND A STATE

Acknowledgement

I, on behalf of the Green Audit team, convey our gratitude and gratefulness to Dr. Sadananda Nath, Principal, Abhayapuri College, Abhayapuri for conferring this noble task of green auditing of the college Campus and allow us to prepare the Green Audit Report, 2020-21. We extend our thankfulness to Dr. R. Tiwari, ex-Coordinator, IQAC and Dr. G. C Das, present Coordinator, IQAC, Abhayapuri College, Abhayapuri for their cooperation during the preparation of the Green Audit Report.

I would like to extend my sincere thanks to Prof. Partha Pratim Baruah, Former HoD, Botany and Present Secretary of University Classes, Gauhati University for supervising the entire process of making the report a successful one.

It would not be possible to complete the Green Audit, 2020-21 without the endeavour and hard work of the following dignitaries in the specified area of the audit.

- 1. Dr. Hitesh Das, Asstt. Professor, Zoology for preparing the Water Audit report.
- 2. Prof. Karishma Talukdar, Asstt. Professor, Chemistry and Prof. Anupama Swargiary, HoD, Zoology for contributing the Waste management report.
- 3. Prof. Trishna Roy Prodhani, Dr. Ashoke Kumar Das and Prof. Dimpee Choudhury, all Asstt. Professor, Botany for preparing the Report on Green Coverage and Plant Audit.
- 4. Dr. Pori Devi, Asstt. Professor, Zoology for contribution in Faunal audit.
- 5. Dr. Santanu Konwar and Prof. Dipsikha Gogoi, all Asstt. Professor, Physics for preparing Renewable energy audit and Rain water harvest report.
- 6. Mrs. Bhagaboty Narzary, Librarian, Prof. Nazima Ahmed, Asstt. Professor, English and Dr. Nabajit Mazumdar, Asstt. Professor, Assamese for preparing Health audit of the college campus.

The Green Audit Team and the Green Audit Committee convey their sincere thanks to all the contributors as mentioned above and acknowledge their contributions.

Finally, I extend thanks and gratitude to all members (teaching and non-teaching) of Abhayapuri College, Abhayapuri for their cooperation and help throughout the entire journey of Green Audit, 2020-21.

ENA

Thanking all.

Dr. Subrata Sarkar Convener, Green Audit Committee

CONTENTS

1. PREFACE	(i)
2. GREEN AUDIT TEAM	(ii)
3. ACKNOWLEDGEMENT	
4. CONTENT.	
5. EXECUTIVE SUMMERY	
6. INTRODUCTION	
7. WATER AUDIT	
8. WASTE MANAGEMENT	
9. ENERGY AUDIT	13-29
10. GREEN AREA AND FLORA AUDIT	29-38
11. FAUNAL AUDIT	38-45
12. HEALTH AUDIT	46-55
13. RENEWABLE ENERGY AUDIT	55-60
14. POLLUTION AUDIT	61-62
15. ANNEXURE (GREEN AUDIT COMMITTE)	63
16. END OF REPORT	

Executive Summary

Several environmental and ecological crises have resulted from fast urbanisation and economic development on a local, regional, and global scale. In light of this, adopting the Green Campus concept for the institute that will lead to sustainable development becomes critical. Abhayapuri College, Abhayapuri, is genuinely concerned and unwaveringly thinks that these fundamental problems and tendencies must be addressed properly. The goal of the analysis was to make sure that the practises on campus were in line with the institution's Green Policy. Preparation and completion of a questionnaire, physical examination of the campus, observation and evaluation of documentation, key person interviews, data analysis, measurements, and recommendations were all part of the process. Water conservation, tree planting, waste management, paperless work, alternative energy, and biodiversity mapping are some of the aspects of 'Green Campus' that it works on. With this in mind, the study' particular goals were to assess the appropriateness of the environmental sustainability management control structure, as well as the degree to which the Departments complied with applicable rules, policies, and standards. It has the potential to have a significant influence on student health, learning, college prices, and the environment. The analysis' criteria, methodologies, and recommendations were all based on the identified hazards.

(Dr. Sadananda Nath) President Green Audit Committee Abhayapuri College, Abhayapuri (Dr. Subrata Sarkar) Joint Coordinator Green Audit Committee Abhayapuri College, Abhayapuri (Dr. Ashoke Kumar Das) Joint Coordinator Green Audit Committee Abhayapuri College, Abhayapuri (Prof. Partha Pratim Baruah) Green Audit Supervisor Former HoD, Botany and Present Secretary of University Classes, Gauhati University, Guwahati-14

1.INTRODUCTION

The green audit aims to analyse environmental practices within and outside the college campuses, which will have an impact on the eco-friendly atmosphere. Green audit can be defined as systematic identification, quantification, recording, reporting and analysis of components of university environment. It was initiated with the motive of inspecting the effort within the institutions whose exercises can cause threat to the health of inhabitants and the environment. Through the green audit, a direction as how to improve the structure of environment and there are include several factors that have determined the growth of carried out the green audit.

NEED OF GREEBN AUDIT

Green auditing is the process of identifying and determining whether institutions practices are ecofriendly and sustainable. Traditionally, we are good and efficient users of natural resources. But over the period of time excess use of resources like energy, water, are become habitual for everyone especially, in common areas. Now, it is necessary to check whether our processes are consuming more than required resources? Whether we are handling resources carefully? Green audit regulates all such practices and gives an efficient way of natural resource utilization. In the era of climate change and resource depletion it is necessary to verify the processes and convert it in to green and clean one. Green audit provides an approach for it. Italso increases overall consciousness among the people working in institution towards an environment.

GOALS OF GREEN AUDIT

The green audit with specific goals as:

- 1. Identification and documentation of green practices.
- 2. Identify strength and weakness in green practices.
- 3. Analyze and suggest solution for problems identified.
- 4. Assess facility of different types of waste management.
- 5. Increase environmental awareness throughout campus.
- 6. Identify and assess environmental risk.
- 7. Motivates staff for optimized sustainable use of available resources.
- 8. The long-term goal of the environmental audit program is to collect baseline data of environmental parameters and resolve environmental issue before they become problem.

OBJECTIVES AND SCOPES OF GREEN AUDIT

The main aim objective of this green audit is to assess the environmental quality and the management strategies being implemented in Abhayapuri College, Abhayapuri. The specific objectives are:

- 1. To assess the quality of the water in the college campus
- 2. To quantify the waste generation and management in the campus.
- 3. To quantify the floral and faunal diversity in the college campus.
- 4. To identify the gap areas and to suggest recommendations to improve the Green Campus status of the College.

The broad aims/benefits of the eco-auditing system would be

- 1. Environmental education through systematic environmental management approach
- 2. Improving environmental standards
- 3. Benchmarking for environmental protection initiatives
- 4. Sustainable use of natural resource in the campus.
- 5. Financial savings through a reduction in resource use.
- 6. Development of ownership, personal and social responsibility for the College campus and its environment.
- 7. Enhancement of College profile
- 8. Developing an environmental ethic and value systems in young people

BENEFITS OF GREEN AUDIT TO EDUCATIONAL INSTITUTES

There are many advantages of green audit to an Educational Institute:

- 1. It would help to protect the environment in and around the campus.
- 2. Recognize the cost saving methods through waste minimization and energy conservation.
- 3. Empower the organization to frame a better environmental performance.
- 4. It portrays good image of institution through its clean and green campus.

Finally, it will help to build positive impression for through green initiatives the upcoming NAAC visit.

2. EXECUTIVE SUMMARY

An environmental audit is a snapshot in time, in which one assesses campus performance in complying with applicable environmental laws and regulations. Though a helpful benchmark, the audit almost immediately becomes outdated unless there is some mechanism in place to continue the effort of monitoring environmental compliance.

This audit report contains observations and recommendations for improvement of environmental consciousness.

3. BASIC DETAIL OF THE COLLEGE

About the college

Abhayapuri College was founded on August 13, 1955, as a consequence of the dedication and relentless efforts of some of the area's brightest minds, led by late Govinda Chandra Dev Sarma, and with the enthusiastic support of the local community. Residents of Abhayapuri, the headquarters of the erstwhile Bijni Raj Estate, and the people of the surrounding territories were united in their desire to see a centre of higher education established in this backward region. Since then, Abhaypuri College has been developing young minds and paving their road to the future in the region.

Abhayapuri College is located in the heart of Abhayapuri town, which is the administrative centre of the North Salmara Sub-Division of the Bongaigaon district in Assam. Abhayapuri is a little town set among isolated hillocks, rich in scenic beauty and surrounded by a tranquil and clean

atmosphere. Many historical monuments dot the town and surrounding area, serving as reminders of a bygone period. RaneeAbhayeswari, the queen of the erstwhile Bijni Raj Estate, is the inspiration for Abhayapuri.

Abhayapuri College began its journey with simply the Arts stream and was incorporated under the shortfall Grants-in-Aid scheme by the Assam government in 1962. University Grants Commission later recognised the college under 2(f) and 12(b) recognitions (UGC). The Science stream, which began in 1979, was brought under the deficit Grants-in-Aid system in 1986, and the College made a significant step toward its goal of providing higher education in the region.

Abhayapuri College has had a long and prosperous journey over the previous seven decades. Abhayapuri College has been able to attain its current prominent position as a result of the selfless and ardent efforts of the College administration, as well as the cooperation of accomplished and committed instructors and office staff, students, and the local community. The College was inspected and recognised by the National Assessment and Accreditation Council (NAAC) with a 'B' Grade during the first cycle of its inspection in the Golden Jubilee year of 2004. The college received a 'B' grade (CGPA 2.50) from the National Accreditation and Assessment Council (NAAC) during its 2nd Cycle of inspection in 2016. Abhayapuri evolved over time.

Vision

To impart holistic and progressive education with a view to moulding students into competent, confident and responsible citizens ingrained with high moral and cultural values.

Mission

* To impart higher education up to postgraduate level by using contemporary teaching-learning methods in both formal and distance learning modes.

* To offer a host of career oriented and vocational courses including computer courses so as to equip students to confidently face competition and the growing demands of the fast-changing job market.

* To develop a scientific temperament and instil humanitarian values in young minds.

GREEN AUDIT ABHAYAPURI COLLEGE, ABHAYAPURI

* To raise awareness and empathy among students towards the problems of their society through the Extension Education Programmes of the College. To work towards all-round development of the students through regular personality development programmes, soft skill trainings, seminars and cocurricular activities aimed at bringing out their best and to give them an edge over others.

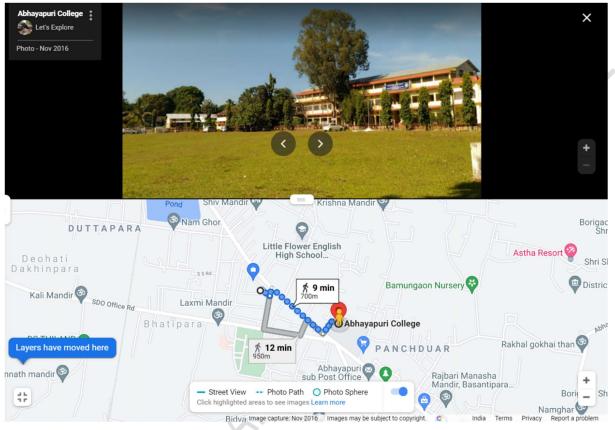


Fig: Location of Abhayapuri College, Abhayapuri

Abhayapuri college is situated in a total area of **24** acres of land divided in three campuses. The total built-up area of the college is **1.88** acres.

The student and faculty strength of the college

Number of Students	2073
Number of teaching staffs (inclusive of Contract Teachers)	79
Number of non-teaching staffs	43
Total	2195

Physical Structure

Academic Departments	20
Extra Curriculum Department	03
Laboratories	12
Conference Hall	01
Library	01 Central Library + Departmental Libraries of each department
Hostels	03 (02 girls' + 01 boys')
Play Grounds	02
Canteen	01
Campus	03

1. WATER AUDIT

QUALITATIVE ANALYSIS OF DRINKING WATER

Introduction

A water audit is a systematic and full analysis of water process by utility. It includes quantitative and qualitative analysis of water is a system. The process begins with an extensive approach to generate the water balance using available data and estimates which helps in identifying specific areas to concentrate in further stages.

Water audit is an effective management tool for minimizing losses, optimizing various uses and thus enabling considerable conservation of water. Therefore, institutional audit of water is very essential practice as it develops awareness about the quality and utilization quantity of water among the peoples associated with such institute

Objectives

Analysis of water quality is very essential in a college as it is always used for drinking and other purposes like laboratory cleaning, reagent preparation for practical, household practices in hostels etc. Moreover, this kind of audit is necessary as permissible rang of water quality parameters enhance the quality of public health of peoples engaged in a particular institute or organization.

Benefits of Water Audit

There are lots of benefits of water audit in a system, which are as follows:

- 1. Water audit improves the knowledge and documentation of the distribution system,
- 2. Identifies the problem and risk areas and a better understanding of what is happening to the water after it leaves the source point.
- 3. Leads to reduced water losses,
- 4. Improved financial performance,
- 5. Improved reliability of supply system
- 6. Efficient use of existing supplies
- 7. Better safeguard to public health and property and reduced legal liability,
- 8. Reduced disruption, thereby improving level of service to customers.
- 9. Large potential cost savings that can be achieved by water harvesting, through the recycling of water and the use of rain water.

SOURCES OF WATER

Quantitative analysis of water of campus and both the hostels of Abhayapuri College were made. An account on storage of water and amount of utilization calculated in the table below.

Type of Water	Location	Water Number of		Utilization of
Storage		Storage	Number of	water

		capacity (litre)	Water loadings on	(litre)
			daily basis	
	Principal Office	1000	2	2000
	Dept of English	1000	2	2000
	Dept of Chemistry	1000	2	2000
Tank	Dept of Geography	1000	1	1000
Talik	Dept of Botany (2 numbers)	1000	1	1000
	Dept of Economics	500	1	1000
	Boy's Hostel	1000	1	1000
	Girl's Hostel	1000	2	2000
Large Aqua	In front of Dept of Economics	200	2	400
guard for drinking water	In front of Dept of Political Science (4 numbers)	200 x 4	1	800
di liiking water	In front of Room-20	200	Ĭ	200
Small Aqua guard	In Office	10	1	10
		Total Utiliza	ation of Water =	13410

From the above-mentioned quantitative analysis of the different water storages it is estimated that the daily average water use during working days in the Abhayapuri College campus along with both the hostels were 13410 litres per day.

Methodology

All the parameters of water are estimated after the methods of APHA (2000). Among these parameters Biological Oxygen Demand (BOD) and Dissolved Oxygen (DO) were estimated in college laboratory and remaining parameters were estimated in the laboratory under District Water Analysis Laboratory, Bongaigoan. All the results of this analysis summarized in table-2.

	Pin Point Location					
Parameters Tested	Boring near office	Boring near Botany Dept	Boring near Geography Dept	Boring near Economics Dept	Boring of Boy's Hostel	Boring of Girl's Hostel
BOD (mg/l)	02	02	02.2	02.1	02	02
DO (mg/l)	08	8.1	8.2	08	08.3	08
pH Value	6.89	6.90	6.87	6.79	6.80	6.85
Turbidity (NTU)	02	2	4	3	2	3
Iron(mg/l)	0.18	0.14	0.43	0.16	0.11	0.16
Nitrate(mg/l)	NIL	NIL	5	3	NIL	2
Chloride(mg/l)	44	48	60	46	40	40
Hardness(mg/l)	82	94	90	86	76	78

Fluoride(mg/l)	0.17	0.15	0.24	0.22	0.18	0.20
Arsenic(mg/l)	NIL	NIL	0.001	NIL	NIL	NIL
Manganese(mg/l)	0.14	0.16	0.23	0.18	0.10	0.09
Residual Chloride(mg/l)	NIL	NIL	NIL	NIL	NIL	NIL
Bacteriological (Coli form)	Absent	Absent	Absent	Absent	Absent	Absent

Normal Ranges of Parameters of Water

Parameters Tested	Accepted Limit	Permissible Limit
BOD (mg/l)		
DO (mg/l)		
pH Value	6.5 to 8.5	No Relaxation
Turbidity (NTU)	1 NTU	5 NTU
Iron(mg/l)	0.3 mg/l	No Relaxation
Nitrate(mg/l)	45 mg/l	No Relaxation
Chloride(mg/l)	250 mg/l	1000 mg/l
Hardness(mg/l)	200 mg/l	600 mg/l
Fluoride(mg/l)	1 mg/l	1.5 mg/l
Arsenic(mg/l)	0.01 mg/l	No Relaxation
Manganese(mg/l)	0.1 mg/l	0.3 mg/l
Residual Chloride(mg/l)	0.2 mg/l	1 mg/l
Bacteriological (Coli form)	/ 100 ml Sample	

1.

All the parameters of water are found to be under permissible limit after drinking water quality parameters prescribe by WHO.

2. WASTE MANAGEMENT AUDIT

Introduction

Waste is any substance which is no longer useful after primary use or which have no use. There are different types of waste. But mainly in college campus solid waste, liquid waste and hazardous waste are generated. Waste management includes the activities and actions required to manage from its inception to its final disposal. Improper management of waste causes hazards to the environment and also the people who are residing in that particular area. Proper waste management keep the environment clean and makes health standards better. The objectives of waste management audit is to evaluate the current status, identify and overcome the problems. In addition to waste generation from different sources institutions are also generating waste in large quantities. Waste management directly implicates that waste generation could be reduced, recycled and reused which further reduces the pressure of solid wastes at disposal sites.

In order to reduce waste on Abhayapuri College all students, faculty and staff must be properly educated on proper waste management practices. The waste management audit of Abhayapuri College mainly focuses on types of wastes generated in the College campus and its hostel campus and how it can be disposed, reuse or recycled by applying a proper methodology. By observing the college and hostels campus mainly two types of waste products have been found. The waste management audit has found the fallen dry leaves of plants, wasted papers, carry bags, plastic bottles, bulbs, wooden materials, thermocol, cardboard, glass etc. Among these some are biodegradable and some are non-biodegradable. The waste generated at Abhayapuri College was not properly disposed, only dumped un-hygienically. There is no proper methodology in AbhayapuriCollege to measure the waste materials. So here it's not possible to say the exact amount of different types of solid waste materials.

Solid waste management

The term "solid waste management" refers to the process of collecting, treating and recycling the solid wastes. By waste management we can change the solid waste to a valuable resource. The primary goal of solid waste management is reducing and eliminating adverse impacts of waste materials on human health and the environment. Solid waste includes of all wastages arising from human and animal activities that are normally solids and discarded as useless or unwanted. To maintain the solid waste management College Authority already installed green, yellow and blue dustbins in the college and hostel campus. Out of these most of the dustbins are green dustbins, a few are yellow and very few are blue dustbins. There is no black coloured dustbin in the college and hostel campus. Usually, the green-coloured dustbins are for wet and biodegradable waste. Yellow dustbins are for papers and glass bottles. Blue dustbins are for papers and glass bottles. Black dustbins for hazardous chemicals. Investigation reveals that there are a total 28 dustbins installed in the college campus and 4 dustbins in the women hostel and one small dustbin in the boy's hostel. Besides these dustbins every department have personal dustbins depending on their needs for solid waste disposal.

Sl. No	Location of dustbins	No. of dustbins	Colour of dustbins
1	Geography department	1	Green
2	Zoology laboratory	2	Green
3	Hall North	2	Green
4	Hall South	1	Yellow
5	English	2	Green
6	Philosophy & Mathematics department	1	Green
7	Assamese department	1	Green
8	Room No. 21	1	Green
9	Room No. 20	1	Green
10	Back side of office room	1	Green
11	NSS and Political Science department	1	Green
12	Physics department	1	Green
13	Principal chamber and office room	1	Blue
14	In front of Office room	1	Green
15	Education department	1	Green
16	Library	1	Green
17	Room RCC-1	1	Green
18	Room RCC-2	1	Green
19	Room RCC-4	1	Green
20	Room RCC-5	1	Green
21	Seminar Hall	1	Green
22	Boy's common room	1	Green
23	Basketball court	2	Green

Table 1: Different colour of dustbins installed in college and hostel campus with location

24	Women's Hostel	5	Green, blue, brown

a) Green dustbin in front of Hall North

b) Blue dustbin in front of office room

b) Yellow dustbin in front of Hall south

d) Green dustbin in front of English department

Fig1: Different types of dustbins installed in the college campus

There are no separate dustbins for segregation of different types of waste materials. The dustbins are not properly used. Wastes are disposed of randomly all over the campus and there is open dumping of waste. The green colour dustbins are used for biodegradable wastes such as leaves, fruits, vegetables etc. and yellow colour dustbins for paper and glass bottles. But by observation it is found that yellow colour dustbins also filled with biodegradable waste and there is mixing of biodegradable and non-biodegradable waste products. There are also concrete waste materials in the campus which are generated due to the works related to the infrastructure.

e) Burning of waste

f) Non segregation of waste

h) Disposal of concrete waste

g) Open dumping of waste

g) Disposal of Concrete waste i) Disposal of wooden waste

Fig 2: Views of open dumping of waste and non-segregation of different waste materials and disposal of different types of waste products

Hazardous waste management

Hazardous waste is the waste that has potential to threats the public health or the environment. In case of hazardous waste products there are not too much hazardous materials are produced in the college campus. Because there are not that much sources to generate it. There are two chemical laboratories in the Chemistry department from where some hazardous products are produced. If these materials are not properly disposed then it may create substantial hazards to students, faculty, and the other staff of the college or to the entire environment of the college campus. The chemical wastes include chromium, sulfide and some toxic solvents. Besides these, solid wastes like glass, broken reagent bottles and unused bottles are found where once concentrated acids had kept. The liquid waste generated in chemistry laboratory are managed to some extent by percolation method. The waste chemicals mixed with water from laboratory passes through concealed pipe line into the soil which are ultimately reaches to the ground water. In physics department waste materials like damaged battery, damaged voltmeter and other electronic gadgets.

g) Disposal of unused reagent bottles used in chemistry laboratory

k) Disposal of water pipe and some wires used for different activities in college

Fig 3: Views of laboratory waste in college campus

In Women hostel 5 dustbins are installed for disposal of waste products. Out of these two dustbins for dry wastes and three dustbins for wet wastes. There is only one small dustbin in Boy's hostel. In hostels wastes are managed by using dustbins, by burning, by dumping beside the hostels or by throw away method. Different types of household waste commonly found in the student's residence. The household waste commonly found is vegetable waste, fruit waste, paper, tissue, plastic wrappers etc. Students should practice waste segregation and then placed the waste materials in specific dustbins. But the students placed waste in dustbins regardless of the type. There are no separate dustbins for biodegradable and non-biodegradable waste. But Green Audit Committee observed there are separate dustbins for dry and waste. In boy's hostel waste are disposed in a well. Waste water coming from kitchen and bathroom are not properly managed as it is treated by digging the ground wherein the water gets accumulated in the same place. Such measures lead to water logging and stagnation which enhances the liability of mosquito borne diseases like dengue and malaria. In girl's hostel sanitary napkins are disposed in the ground by digging the soil near the surrounding areas. This improper disposal of waste leads to soil contamination wherein it pollutes the natural environment.

l) Disposal of wet waste in hostel campus

m) Disposal of wet waste in women's hostel campus

n) Disposal of dry waste in women's hostel campus

o)Digging of waste water outside the women's hostel

p) Improper use of drainage system in women's hostel

q) Disposal of solid waste
 boy's hostel

Fig 4: Management of different types of waste in both Women's and Boy's hostel

Suggestions and recommendations

- 1. In both college and hostel campus, we can keep a set colour coded dustbins such as green, blue, yellow and black colour for different waste materials whereas and these bins shall be properly labelled.
- 2. In hostel campus also install two bins, one for kitchen's dry waste and one for wet waste.
- 3. Trained the students, teaching and non-teaching staff, housekeeping staffs in segregation.
- 4. The large amount of leaves can be composted using the method of mesh composting by setting up the composting unit and also trained people to run the composting units.
- 5. The Authority can opt to compost the wet waste inside the hostel campus by the method of tank composting. The compost might be used in the garden.
- 6. Tie up with Community bin of Abhayapuri Municipality for recycling and disposal of solid waste generated in the college campus which can be reused.
- 7. Organic manure can be produced from biological waste generated in the college campus and further this can be used for the plants in the college campus.
- 8. Use micro methodology in laboratoryso that chemical waste is reduced and minimum amount of wastes are produced.
- 9. Organic waste generated in the campus can be used in vermicomposting which is initiatedby Botany department.
- 10. To reduce waste at college, Authority can practice waste management education through lectures, advertisement on notice or boards displaying slogans on boards in the campus.

3. ENERGY AUDIT

SUMMARY OF THE ENERGY AUDIT:

Details of the energy audit conducted in the campus of Abhayapuri College are furnished in this report under different sections. The report is based on detailed study including analysis of available data as well as findings based on inspections. The entire exercise is aimed to detect wastage of energy in onehand and to identify energy saving potential on the other.

Key findings -

- The campus consumes 32300 units of electrical energy from APDCL per yearwhich is based on consumption data for 2019-20.
- Energy Performance Index for the same year is 6.71, which may be considered to be fairly good. (details in para- 6.6)
- Annual cost of electricity (for 2019-20) is Rs 2,92,074.00 This amount is without the surcharge on arrear paid during the year.
- In the whole year of 2018-19 and even from around half year before, the electricity bills were served on assessment basis, on the basis of an assessed consumption of 99.86 Kwh per day. Average per day actual billed unit in the following year 2019-20 which was based on actual meter readings, was 89.18 Kwh. From the above data, it is seen that the daily consumption considered in 2018-19 for assessed bills was higher than the actual average daily consumption found from meter readings in 2019-20. Even ignoring the fact that normally there is an increasing trend in power consumption, there was over billing to the extent of 11.97% in 2018-19compared to 2019-20. Thus, in the year 2018-19, overbilling was done to the extent of around 4216 Kwh (billed unit of 18-19, 36512 billed unit of 19-20, 32296 Kwh). In terms of money, extra billed amount was Rs 28,668.80. Thusthe college had to make an additional payment of around Rs 28,669.00 in the year 2018-19 as a result of non-installation of meter by APDCL. (details in para- 6.4.1)
- Electricity bills were served at highly irregular intervals for most of the years- 2018-19 and 2019-20. It may be seen in the report that bills were served for periods ranging from 6- 10 months. This caused serious problem for the college authorities to clear the payment on time. As a result, the college had to pay huge amounts as surcharge in 2018-19 and 2019-20. This has been elaborately discussed in para- 6.4.2
- There is scope for saving in power consumption in the lighting system by replacement of existing lights by energy efficient lights. (Details in para- 6.1)
- The room air-conditioners installed in the buildings are with conventional compressors. Though inverter-based room air conditioners are judicious options for energy efficient performance, the replacement of the existing room air-conditioners by inverter airconditioners has not been recommended due to high-cost implications and long payback period. Instead, measures for running and maintaining the existing air conditioners for optimum energy efficient performance have been suggested. (Details in para- 6.2)
- Attention is needed in the reactive power management of the campus. The college was deprived from the benefit of power factor rebate in 2018-19, asno power factor record was shown in the bills as the meter was stopped/ damaged. In parts of 2019-20 also, power factor record was not shown resulting in deprivation of the college from the benefit. Power factor has been found to be properly recorded only in the bills of 2020-21. Since maximum rebate is available at power factor above 0.97, it should be targeted tomaintain power factor at around 0.99 consistently throughout the year by installation of APFC panels. In the year 2020-21 (up to Feb'21) the college was deprived from rebate to the tune of Rs 771.00 for not maintaining the power factor above 0.97 in couple of months. This has been elaborately discussed in para- 6.3

- Installation of roof top solar panels has been suggested for utilization of greenenergy and also to relieve the college from the burden of high electricity bills
- It is also suggested to involve students in energy conservation through launching of enrolment of GREEN VOLUNTEERS from students

SUMMARY OF RECOMMENDATIONS/ SUGGESTIONS

Items	Recommendations/ Suggestions			
Lighting system	i) It is suggested to replace the fluorescent tubes by LED			
(Details in para-6.1)	tubes, which will yield an annual saving of Rs 18,751.00 to			
	the college			
	ii) Similarly, it is also suggested to replace the CFL lamps by			
	LED lamps which is likely to save Rs 2614.00 annually.Only few number of incandescent bulbs installed in the			
	college buildings (only 8) should also be changed by LED			
	lamps. This would yield an annual saving of Rs 3376.00			
Air conditioners	Though inverter based room air conditioners are judicious options for			
(Details in para-6.2)	energy efficient performance, Though inverter based room air			
	conditioners are judicious options for energy efficient performance, the			
	replacement of the existing room air-conditioners by inverter air- conditioners has not been recommended due to high cost implications			
	and long payback period. Instead, measures for running and			
	maintaining the existing air conditioners for optimum energy efficient			
	performance have been suggested. However whenever new ACs are			
	procured either for new installation or for replacement of existing ones,			
	it is suggested that inverter based ACs with BEE star rating (if			
	available) should be procured.			
Reactive Power	It is recommended to maintain power factor at around 0.99 consistently			
Management (Details in para-6.3)	throughout the year by installation of APFC panels. On the basis of annual consumptions of 2019-20, there is a potential to			
(Details in para-0.5)	save Rs 6395.00 per year through rebates on power factor with			
	maintenance of power factor above 0.97.			
Students' involvement	i) Awareness should be created among the students to			
in energy conservation	inculcate the habit of switching off the fans, lights and air-			
(Details in para-7)	conditioners whenever no student is present in the class			
	room, laboratory etc. This may reduce the power			
	consumption to a great extent and will avoid wastage of			
AXX	power. Such habits will also help the students in saving power at theirhomes.			
	ii) It is suggested to form a society of GREEN			

	VOLUNTEERS from students to take up energy conservation and environmental activities in the place of study, home and society including creating awareness among
	the students and society.
Installation of roof topsolar plant (Details in para-8)	It is suggested to explore the feasibility of installing roof top solar plant in the college building. Initially it is suggested that a roof top plant of 10/15 KWp be installed. There are two business models for installation of solar PV plant- CAPEX & RESCO which are explained in the relevant para. It is shown that if a solar plant of 10 KWp is installed in RESCO model, annual saving to the college should be around Rs 43,099.00.

SCOPE OF WORK:

The scope of this energy audit includes-

- Collection of all relevant data, documents, electricity bills, log books relating to electricity use operation etc.
- Inspection of the buildings and installations.
- Interview, interactions with management, operation and maintenancepersonnel.
- Analyze the data to evaluate assess energy use and to suggest measures to save energy use and improve performance.
- Scope includes all sectors like HVAC, lighting and other power loads including electrical distribution system.

BASIC DATA OF THE CAMPUS:

The campus houses a combination of multi-storeyed as well as Assam type buildings are accommodating administrative offices, class-rooms, laboratories, conference rooms etc. Power supply is taken in the campus at single point from APDCL in 11KV through a 63KVA, 11/0.433KV transformer.

Sl.No	Buildings	Floor area	(Sqm)	Purpose of use
		Excludin gcorridor	Including corridor	
1	Front RCC Building			
G.	Gr. floor	589.18	786.81	Principal, Vice Principal'srooms, administration/ staff office, GB room, TCR, smart classroomsetc.
	1 st floor	619.96	759.58	Education department, classrooms, seminar hall,

Table-1:	Main	buildings
----------	------	-----------

				library, reading room etc.
	2 nd floor	577.86	776.12	Class rooms, IT lab, datacentre, tech meeting rooms etc.
2	New RCC Building			
	Gr. floor	125.42	194.54	Class room
	1 st floor	125.42	194.54	Class room
3	Physics, Chemistry Block- AT	608.57	653.58	Class rooms, laboratories, Teachers'common room etc of Physics & Chemistry departments
4	Back Block- AT	401.92	508.83	Geo TCR, labs, classrooms etc.
5	Hall North Zoo- BotanyBlock- AT	802.19	1017.44	Labs, classrooms, TCR, halls, etc of Bot & Zoo department
6	KKHSOU- Canteen-Nano Lab Block- AT	282.05	344.39	Nano lab, class room,IQAC room, KKH, Canteen etc.
7	Room 3 & 4 Block(Middle Block)- AT	430.02	637.06	TCRs of Philosophy, Assamese, History, Arabic and classrooms.
8	Room-20 & 21- AT	218.23	344.34	Class rooms
9	Union Body Room- AT	26.57	26.57	Union body office
	Total	4807.39	6243.80	

Observations on the available documents/ data relating to electricity use:

The analysis made in this report is mainly based on the electricity bills available on records and produced before the auditor. However, few bills could be found from records. The consumptions and amount of these bills are assessed from themeter readings from the immediate previous and next bills and prevailing tariff respectively. In specific, following observations are made in respect to the electricity bills from APDCL on the basis of which analysis are made-

For the entire year 2018-19, electricity bills were served on the basis of assessed consumptions as the meter was reportedly stopped/ damaged. In fact, most of the bills in the preceding year also were served on assessment basis only.

- a) Bills were served rather irregularly and even one bill was served for aperiod of about six months (184 days, from 3-10-18 to 05-04-19). As aresult, it became difficult for the college to clear the huge amount of accumulated bill. Due to this, the college had to pay huge amount in terms of surcharge on arrears.
- b) Bills were served considering a consumption of around 99.86 units per day, which was almost 11.97% higher than the average billed units of 89.18 per day for the year 2019-20 which was based onactual meter reading.
- c) As the bills were not based on meter readings, no data in respect to the power factor were available in the bills. From the data recorded in the bills of subsequent years (2020-21 where proper records of powerfactor were available in the bills) after installation of the new meter, it is seen that the actual power factor of the college ranges

from 0.95 to 0.99. Thus, the college was deprived from the rebate on power factor due for power factor of 0.95 and above. It is to be noted that as per the APDCL tariff, rebate on power factor is admissible in percentage of monthly consumptions as follows- from 0.85 to 0.95: 1 %, from 0.95 to 0.97: 2% and from 0.97 to 1.0: 3%.

Bills were served on the basis of meter readings from 2019-20 onwards effective from 05-04-2019. However, in this year also, there were issues relating to submission of bills and data recorded on the bills:

- a) First bill of 2019-20 was served for a period of almost 10 months (302 days, from 05-04-19 to 01-02-20). This also caused a huge burden forpayment as the bill amount was very high. Consequently, the college had to pay extra amount by way of surcharge on arrears.
- b) Though the bill (05-04-19 to 01-02-20) was served on the basis of meter readings, the relevant data like maximum recorded demand, power factor etc, were missing. Also, the bill was not prepared as per applicable tariff as the LTMU, power factor rebates were not shown.

In the year 2020-21, bills were served almost regularly, except for the first wo bills which had some anomalies-

- a) The first bill was served for a period of 61 days (from 01-04-20 to 01- 06-20).
- b) The bill had shown a power factor of 0.85 which seemed to be unrealistic when compared with the power factors recorded in other bills which ranged from 0.95 to 0.99. The maximum recorded demand was not shown in the bill.
- c) The second bill was served for a period of 60 days- from 02-08-20 to 31-07-20. Apart from the period, which was for two months, this bill had properly shown all the relevant data like maximum demand, power factor etc.
- d) All the subsequent bills for the year were however found to be normal with proper records of all relevant data.

Basic electricity data of the campus:

The electricity data made available to the auditor along with data collected/ acquired from site visit, interactions with the faculty and staff, have been analyzed with the objective of assessing the energy saving potentials, which are elaborately stated in the following sections of the report. The key electricity dataof the campus are shown in Table-2.

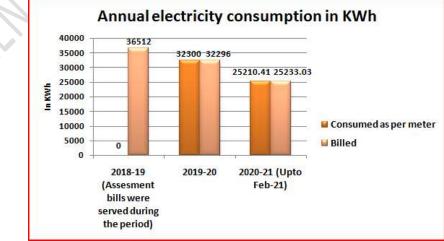
	SI	Details	Data					
	No							
	1	Sanctioned load KW (KVA)	39 KW (46 KVA)					
Ī	2	Supply Voltage from utility	11 KV					
Ī	3	Installed transformer capacity	1 X 63 KVA					
	4	Installed capacity of DG set		KVA (3 Phase) VA (1-Phase				
			Total- 77.5 H	KVA				
	5	Annual Electricity Consumption Data	2018-19	2019-20	2020-21 (up to Feb'21)			

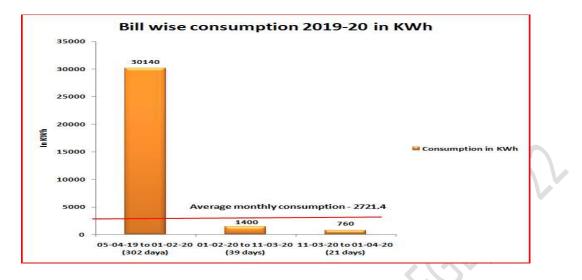
Table-2:	Basic	data	of	electricity	7 in	the	campus
I abit # .	Dusic	uuuu	•••	ciccui icic		une	campus

5.1	Annual electricity	36512 Kwh	32300 Kwh	25210.41 Kwh
	consumption from utility (as	(Assessed bill,		
	per bills from utility)	not based on meter)		
5.2	Annual electricity	Data not	Data not	Data not
	consumption from DG set	available	available	available
5.3	Total annual electricity consumption $(5.1 + 5.2)$	36512 Kwh	32300 Kwh	25210.41 Kwh
6	Annual Cost of electricity	2018-19	2019-20	2020-21(up to Feb'21)
6.1	Purchased from	Rs 3,57,379.00	Rs 3,66,263.00	Rs 2,62,095.00
	utility(including elect charge,	(Assessed bill,		
	fixed charge & elect duty etc	not based on		
	after considering all admissible	meter)		
	rebates including			
	surcharge on arrear)		C X	
6.2	Cost of HSD consumed by	NA	NA	NA
	DG sets			
6.3	Total electricity cost	Rs 3,57,37900	Rs 3,66,263.00	Rs 2,62,095.00
7.0	Major loads apart from light,			
	fan, and small equipment, appliances etc-			
7.1	Unitary air- conditioners	15 X 1TR		
		5 X 1.5 TR		
		2 X 2 TR		
7.2	Water pump	5 X 0.5 HP		

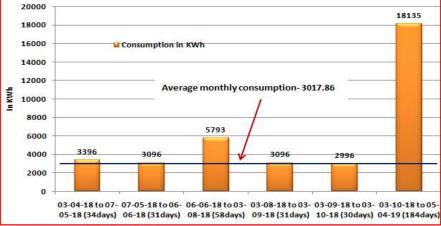
ELECTRICITY CONNECTION & POWER CONSUMPTION DETAILS-

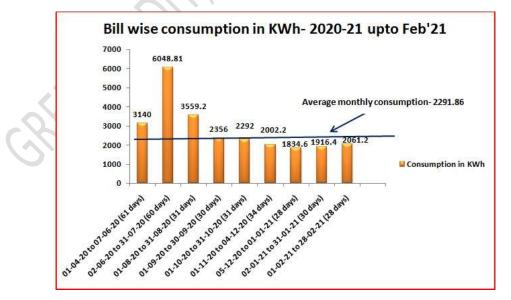
Power connection in the campus is provided in 11 KV. The substation consists of 1 X 63 KVA, 11 0.433KV transformer. From The contract demand for the campus is 39KW (46KVA). The college campus has 2 (two) DG sets- 1X 62.5 KVA (3-phase) and 1X 15KVA (1-phase) to cater for the standby power needs.

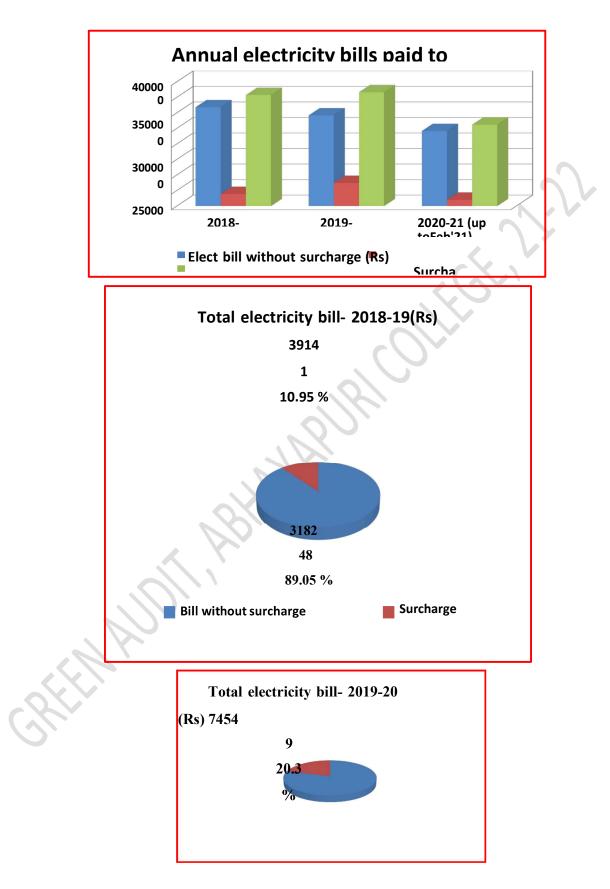

Electrical energy consumptions from APDCL source:


Electricity consumption details of the college campus for the years 2018-19, 2019- 20 & 2020-21 (upto Feb'21 are furnished in Annexure-1. The summary electricity consumption data from APDCL are shown Table-3 below-

Sl.No	Description		Data					
		2018-19	2019-20	2020-21 (up to Feb'21)				
1	Total Electricity consumption (KWh)	37011 (assessed bill)	32300	25210.41				
2	Total units billed	36512	32866	25233.03				
3	Monthly average electricity consumption (KWh)	3017.96	2721.4	2291.85				
4	Total annual electricity cost without surcharge on arrear (Rs)	3,18,238.00	2,92,074.00	2,41,682.00				
5	Total annual surcharge paidon arrear (Rs)	39,141.00	74,549.00	20413.00				
6	Total annual electricity cost including surcharge on arrear	3,57,379.00	3,66,623.00	2,62,095.00				
7	Monthly average electricity cost, on data at sl-4 (Rs)	26,519.83	24339.50	21971.10				
8	Maximum recorded monthly power factor	NA	0.95 (In the bill: 01-02-20 to 11-03-20))	0.99 (June- Aug'20				
9	Minimum recorded monthlypower factor	NA	N A	0.85 (In the bill: 01-04-20 to 01-06-20))				
10	Maximum recorded demand (KVA)	NA	N A	23.52 (Oct.20)				
11	Minimum recorded demand (KVA)	NA	N A	9.28 (Dec'20 & Jan'21)				


Table-3 Summary of electricity consumption & other important data from APDCLbills


It may be noted that as per tariff, the unit billed (sl-2 of the table) is calculated after adding 3% towards metering done on the LT side (LTMU charge) of the Transformer and adding or deducting penalty or rebate on power factor, as applicable, on consumed units. However, in the assessment bills served in 2018- 19 and also in the first bill of 2019-20, these details were not shown.



Bill wise consumption in 2018-19 in KWh Assessment bill

Standby DG Set:

The college has 2 (two) DG sets- 62.5KVA and 15KVA. However details of operating data and log book were not available. The college authorities are requested to maintain the record of date wise operation data with on- off timings, HSD stock and procurement details for post audit review.

ELECTRICAL LOADS:

Main electrical load in the college consists of lights, fans, split type air-conditioners and laboratory instruments and appliances and few low capacities water pumps and water coolers. Details of lights, fans and air- conditioners are shown in Table-4, below-

Building	Floor area	Fan	Ligh		-			UPS	AC
	(Sqm) Excl			CFL		LED	Fl.]	
	corridor		bulb	bulb	bulb	tube	tube		
	(Incl				\mathcal{N}				
	corridor)								
				X					
RCC Gr	433.57	36	1	31	0	12	5	1X3KVA	2X1TR
Floor(Front	(585.58)								1X1.5TR
block)				×					
RCC 1st Floor	289.32	19	0	10	0	7	18		4X1TR
(Oldpart)	(368.98)								1X1.5TR
RCC 1st Floor	330.64	26	13	8	0	6	1		3X1.5TR
(Oldpart, Central	(390.60)								
Library)									
RCC 2nd Floor	238.94	27	0	0	0	11	4		6X1TR
(Oldpart)	(287.63)								
RCC 2nd Floor	338.92	21	0	12	0	10	0	1X30KV	1X1TR
(Oldpart- RCC1,	(488.49)							A	2X2TR
RCC2									
Block)									
RCC Building	155.61	14	0	5	0	2	14		
(NewPart, GF)	(201.23)								
New RCC	250.84	16	0	0	0	12	0		
Building(Room	(389.07)								
RCC-6&7)									
Physics,	608.57	29	3	10	4	6	14	1X3KVA	
ChemistryBlock-	(653.58)								
AT						-			
Back Block- AT	401.92 (508.83)	23	9	2	2	0	1		
Hall North	802.19	44	0	14	0	6	11		
Zoo- Botany	(1017.44)		\$		5	Ŭ			

Table-4 Details of lights, fans & air-conditioners

Block- AT									
KKHSOU-	282.05	16	1	7	2	0	11		2X1TR
Canteen- Nano LabBlock- AT	(344.39)								
Room 3 & 4 Block(Middle	430.02 (637.06)	46	4	1	0	19	14		
Block)- AT	``´´								
Room-20 & 21- AT	218.23 (344.34)	17	0	0	0	9	0		5
Union Body Room-AT	26.57 (26.57)	1	0	0	0	0	1		
Total	4807.39 (6243.79)	335	31	100	8	100	94	2X3KVA 1X30KV A	15X1TR 5X1.5TR 2X2TR

It may be seen from the above table that while LED lights (lamps and tubes) are being installed in the college, still there are substantial numbers of CFL lampsand fluorescent tube lights. Also, there are handful numbers of incandescent lamps in the college building. Split air conditioners installed are with conventional compressors, not the latestenergy efficient versions like inverter types.

REVIEW & ANALYSIS OF THE DATA & THE SUGGESTIONS / RECOMMENDATIONS: Lighting system:

Replacement of fluorescent tube by LED tube: There seems to be energy saving potential by replacement of fluorescent tubes by LED tubes. The 36 W fluorescent tubes may be replaced by 18 W LED tubeswhich has better light output the than the fluorescents. The power input comparison of the two types are shown in Table-6 below-

Table-6Input power comparison of fluorescent tube with LED tube

Type of light	Lamp watt	Ballast factor	Input powerdrawn (watt)
Fl. tube	36	0.88	40.9
LED tube	18	1	18
Difference			22.9

The difference in input power drawn by one LED (18 W) tube against one fluorescent tube (36 W) is shown in the above table. Saving in power consumption and corresponding amount in Rs per year by replacement of94 fluorescent tubes are shown in Table-7. The assessment is based on consideration of average burning hours per day as 6 hours and yearly college opening days as 220 days.

No of light s	Differenc ein input power per light	Hours of operation per day	No of opening days per year	Saving in power consumption per year per light (2X3X4)	Saving in power consumption per year by replacement of all fl. tubes (1X5)	Yearly saving in Rs at supply tariff ofRs 6.60 per Kwh
1	2	3	4	5	6	7
94	22.9 W	6 hrs	220 days	30228 Wh 30.228 Kwh	2841432 Wh 2841.4 Kwh	18,751.00

 Table-7

 Saving by replacement of fluorescent tubes by LED tubes

Replacement of Compact Fluorescent lamps (CFL) by LED lamps: There are altogether 100 CFL lamps of different wattage in the collegebuildings. CFLs are considered to have lower efficiency in terms of light output per watt (light efficacy) compared to LED lamps. LEDs have also better advantage in terms of life (total burning hours). Moreover, CFLs (also, all fluorescent lamps) are considered to be environmentally harmfulfor disposal as they contain some amount of mercury. Considering the above advantages, the CFL lamps may be changed by LED lamps. It maybe mentioned that cost of LED lamps and CFL lamps are almost similar. It is therefore suggested that all CFL lamps may be changed by 12W LED lamps. Consequent saving in power consumption and corresponding amount in Rs per year due to replacement of 100 CFL lamps by LED lamps are shown in Table-8. The assessment is based on consideration of average burning hours per day as 6 hours and yearly college opening days as 220 days. While actually, wattage of CFL lamps installed are different, in the assessment, CFL lamps are considered as 15W on uniform basis.

 Table-8

 Saving by replacement of CFL lamps by LED lamps

No of	Differenc	Hours of	No of	Saving in power	Saving in power	Yearly saving
lamps	ein input	operatio	opening	consumption	consumption per	in Rs at
	power per	n per	days per	per year per	year by	supply tariff
	lamp	day	year	lamp	replacement of	ofRs 6.60 per
		-			all CFL lamps	Kwh
				(2X3X4)	(1X5)	
1	2	3	4	5	6	7
100	3 W	6 hrs	220	3960 Wh	396000 Wh	2,614.00
	(15-12) W		days	3.96 Kwh	396.00 Kwh	

(Replacement of 15 W CFL lamps by 12 W LED lamps)

Replacement of incandescent lamps by LED lamps:

The population of incandescent lamps in the college building is very nominal, only 8. Considering the fact that LED lamps consume almost 75 to 80% less energy than incandescent lamps, use of incandescent lamps should be avoided. As such, the incandescent lamps, though nominal, should

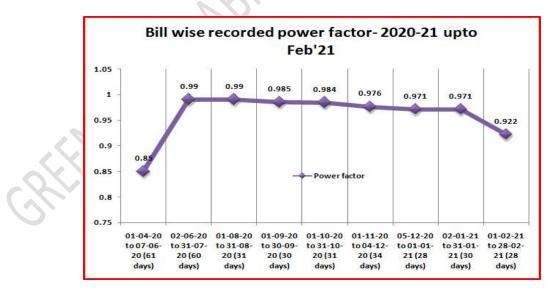
be replaced by LED lamps. All incandescent lamps may be replaced by 12 W LED lamps. Assessment of saving, considering the incandescent bulbs as 60 W, is shown in Table-9 below-

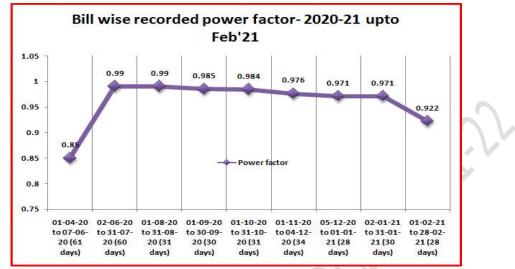
Table-9 Saving by replacement of incandescent lamps by LED lamps

No of	Differenc	Hours of	No of	Saving in power	Saving in power	Yearly saving
lamps	ein input	operatio	opening	consumption	consumption per	in Rs at
	power per	n per	days per	per year per	year by	supply tariff
	lamp	day	year	lamp	replacement of	ofRs 6.60 per
					all CFL	Kwh
				(2X3X4)	lamps(1X5)	
1	2	3	4	5	6	7
8	48 W	6 hrs	220	63360 Wh	506880 Wh	3376.00
	(60-12) W		days	63.36 Kwh	506.880 Kwh	

(Replacement of 60 W Incandescent lamp by 12 W LED lamp)

Air-conditioners:


There are altogether 22 split air- conditioners $(15 \times 1TR + 5 \times 1.5TR + 2 \times 2TR)$ in the college buildings which constitute the major share of power consumption during the summer. Air conditioners are with conventional compressors and not with energy efficient inverter compressors. While the air conditioners based on inverter technology are considered to be much more energy efficient compared to the conventional air conditioners, considering the cost implications and long payback periodas the use of ACs is limited to only few months of a year, replacement of the existing ACs has not been suggested. However, it is recommended that whenever new air-conditioners are purchased for new installation or replacement of any of the existing ones, inverter air-conditioners with energy efficient star labeling by BEE (Bureau of Energy Efficiency), if available, should be purchased. It is to be mentioned that the energy efficiency data provided by the manufacturer for a particular model are achieved under the designed weather conditions and most importantly, if the air-conditioners are properly maintained. Few tips for use of the air-conditioners are suggested below to achieve optimum energy efficiency-


- a) Govt of India has now made the default temperature setting of 24°C mandatory for all room air-conditioners. This means that all new room air-conditioners henceforth will come with default temperature setting of 24°C. It is to be noted that approximately 5-6% power consumption can be reduced by raising one degree centigrade temperature setting of the air conditioners. For example, if temperature setting is increased from 20°C to 24°C, power consumption will be reduced by 20%, considering 5% reduction per °C. Therefore, it is recommended that temperature setting of all room air- conditioners (unless for specific application), should be maintained at 24°C.
- b) All air conditioned spaces should be properly sealed to avoid entry of ambient air, and windows should be curtained to avoid outside heat gain.

c) Air conditioners should be properly maintained. Particular attention should be given to clean the air filters of the indoor units regularly and also the condenser coils of the outdoor units. Dirt and dust deposits result in clogging of the air filters which causes increase in power consumption besides reducing the cooling effect. Dirty and clogged airfilters cause as high as 10-12% more power consumption.

Reactive power management :

- a) As mentioned in para 3.2.1(c), APDCL tariff has provision for rebate on power factor in percentage of monthly consumptions as follows- from 0.85to 0.95 1 %, from 0.95 to 0.97 2% and from 0.97 to 1.0 3%
- b) In whole of 2018-19 and part of 2019-20, the college has been deprived of the benefit of this rebate on power factor for absence of records of power factor in the bills. Actual data of power factors are only available in the bills of 2020-21. After carefully examining the data for 2020-21 also, the power factor (0.85) shown in the bill for the period 01-04-20 to 01-06- 20, seems to be unrealistic and suspected to be erroneous as the same isinconsistent with the recorded power factors in all the subsequent months.
- c) As maximum rebate of 3% is available on power factor from 0.97 to 1.0, itshould be targeted to maintain the power factor consistently in every month above 0.99 to derive the maximum benefit. For maintaining the power factor at such level consistently, APFC (Automatic Power Factor Correction) panels need to be installed. To decide the capacity and specification of the APFC panel, actual data of maximum demand and power factor for the whole year is necessary. The relevant data available for the college is for the year 2020-21, which cannot be considered to be actual and realistic as most of the periods were under lockdown due to pandemic. Nevertheless, the data are shown in the charts below-

The rebates on power factor received against receivable (if power factor was maintained at 0.99 in every month) in 2020-21, up to Feb'21 are shown in the table below-

Table-10 Rebates on power factor Achievable against actual

Description	2020-21 (up to Feb'21)			
-	In Kwh	In Rs (@6.60kwh)		
Annual consumption	25210.41			
Rebate achievable (3%)	756.31	4,991.65		
Actual rebate obtained	639.52	4,220.83		
Difference	116.79	(Loss) 770.82		

It may be noted that above data are for 2020-21 which may be below the normal consumption as most of the periods in the year were under lockdown. Moreover, the data are for 11 months only (up to Feb'21). Considering the basis for yearly consumption of 2019-20, during which the college was normally functioning except for the last week, annual consumption may be taken as 32300 Kwh. On that basis, yearly achievable rebate on power factor is 969.00 Kwh (3% of 32300) and yearly achievable rebate in terms of money would be Rs 6395.00 (at energy charge of Rs 6.60).

Review of yearly consumption and bill amounts:

It may be seen that the whole year of 2018-19 and even from around half year before, the bills were served on assessment basis, considering an assessed consumption of 99.86 Kwh per day. Average per day actual billed unit in the following year - 2019-20 which was based on meter reading, was 89.18 Kwh. It may be seen from above that average daily consumption considered by APDCL for serving assessed bills in 2018-19 was higher than the average daily consumption found from actual meter readings in 2019-20. Even if we ignore the fact that normally there is an increasing trend in power consumption, there was over billing to the extent of 11.97% in 2018-19 compared to 2019-20. Thus, in the year 2018-19, overbilling was done to the extent of around 4216 Kwh (billed unit of 18-19, 36512 – billed unit of 19-20, 32296 Kwh). In terms of money,

extra billed amount was Rs 28,668.80. Thus, the college had to make an additional payment to the tune of Rs 28,669.00 in the year 2018-19 as a result of non-installation of meter by APDCL. From the data shown in table-3 and also in the charts, the college had to pay Rs 39,141.00, Rs 74,549.00 and Rs 20,413.00 as surchargeon arrears in the years 2018-19, 2019-20 and 2020-21 respectively, These constituted 10.95%, 20.3% and 7.8% of the total billed amounts of the respective years.

Ceiling fans:

There are 335 ceiling fans in the college buildings, most of which are old fans. Presently, star labeled ceiling fans are available under BEE star labeling scheme. It is suggested that whenever, new fans are procured; only 5 star rated ceiling fans are selected.

Building Energy Performance Index:

The Energy Performance Index of the buildings in the campus, which is denoted by electricity consumption in Kwh per year per sqm of built up area for the years 2018-19 & 2019-20 are as follows-

2018-19: 7.6 Kwh/ Sqm 2019-20: 6.71 Kwh/ Sqm

As consumption data for full 2020-21 is not available, the EPI for 2020-21 has notbeen calculated. Moreover, as a long period in the year was under lockdown, the calculated index would not be realistic. From the index calculated for the two years as shown above, EPI for 2018-19 cannot be considered as actual since consumptions for the year was not based on actual meter reading. Therefore, EPI of 6.71 (for the year 2019-20) may be considered as realistic figure for the analyzed period.

STUDENTS' INVOLVEMENT IN ENERGY CONSERVATION:

It is highly essential and also will prove to be beneficial for the college, to create awareness among the students to inculcate the habit of switching off the fans, lights and airconditioners whenever no student is present in the class room, laboratory etc. This may reduce the power consumption to a great extent and willavoid wastage of power. Such habits will also help the students in saving power at their homes.

FORMATION OF GREEN VOLUNTEERS:

It is suggested to form a society of GREEN VOLUNTEERS from students to take up energy conservation and environmental activities in the place of study, home and society including creating awareness among the students and society. They may also take up the responsibility of easy measures like switching off the fans, lights and air-conditioners whenever no student is present in the class room, laboratory etc. as suggested at 6.7.1 above. They may also be encouraged to organize awareness programmes on energy conservation and environment.

INSTALLATION OF SOLAR ROOF TOP PLANT:

There is scope for installation of roof top solar plant in the college building. Considering

the roof top spaces, it is feasible to install solar plants of around 100 KWp capacity on the roof tops of the buildings. However, a feasibility study shall have to be conducted to actually assess the capacity. As per the recent energy audit conducted by this energy auditor in Guwahati, roof solar plants have been found to generate 3.28 Kwh per KWp per day on the basis of yearly average in Guwahati weather, which should be similar to Abhayapuri.

There are two options available for executing the project- CAPEX or RESCO. In CAPEX mode entire capital expenditure is borne by the owner and the plants remain as the property of the owner. In RESCO mode, the agency bears the investment and also maintains the system. The owner shall have to buy the units generated from the plant asper purchase agreement with the RESCO agency as per agreed tariff. Present solartariff is around Rs 3.00 per Kwh. The capital cost on the other hand is around Rs 40,000.00 per KWp for grid interactive solar plants.

It is suggested that initially a plant of 10/15 KWp capacity may be installed. Considering execution in RESCO mode, calculation for a 10 KWp plant is shown below-

Table-11
Saving from installation of a 10 KWp roof top solar plant

			1
Yearly	Purchase cost		Yearly saving
generation from	for solar@	purchased from	(Rs)
solar @ 3.28	Rs 3.00	APDCL @ Rs	
Kwh/ day/	per	6.60 per Kwh	
KWp(Kwh)	Kwh	(Rs)	
• • • • •	(Rs)		
11972 Kwh	35,916.00	79,015.00	43,099.00
	generation from solar @ 3.28 Kwh/ day/ KWp(Kwh)	generation from solar @ 3.28for solar@ Rs 3.00Kwh/ day/ KWp(Kwh)per Kwh (Rs)	generation from solarfor solar@ 0.3.28purchased from APDCL @ Rs 6.60 per Kwh (Rs)Kwh/ day/ KWp(Kwh)per (Rs)6.60 per Kwh (Rs)

4. GREEN AREA AND FLORAL AUDIT

1. Introduction

All plant and animal species are linked together in a complex web of life; we depend upon biodiversity for our survival. Biodiversity is the key to healthy ecosystems and ultimately a healthy planet. It keeps the air and water clean, regulates our climate and provides us food, shelter, clothing, medicine and other useful products. Each part within this complex web diminishes a little when one part weakens or disappears. The modernization and industrialization are the two important outputs of twentieth century which have made human life more luxurious and comfortable Today, people are getting more familiar to the global issues like global warming, greenhouse effect, ozone depletion and climate change etc. Simultaneously, human activities are the main cause of biodiversity loss. Habitat fragmentation, caused by urbanization and agriculture, overexploitation of resources, lead to depletion of species. Today, people are getting more familiar to the global issues like global warming, greenhouse effect, ozone

depletion and climate change etc. The time has come to wake up, unite and combat together for sustainable environment. University Grants Commission has mentioned "Green Campus, Clean Campus" mission mandatory for all higher educational institutes.

Green Audit- a tool for Environmental Protection and Conservation. It is the most efficient ecological tool to solve such environmental problems. It is a process of regular identification, quantification, documenting, reporting and monitoring of environmentally important components in a specified area. Among various target areas of green auditing, green campus audit or floral audit is another most important one to control biodiversity exploitation.

2. Objectives:

- i. To study green cover of Abhayapuri College campus.
- ii. To study species diversity of woody and herbaceous vegetation in the College campus.
- iii. To explore potential of woody vegetation of the college campus as an oxygen source.

3. Benefits of the Green Campus/ Floral Audit

- i. To create a green campus.
- ii. To provide a basis for improved sustainability
- iii. Impart environmental education through systematic environmental management approach and improving environmental standards
- iv. Benchmarking for environmental protection initiatives
- v. Development of ownership, personal and social responsibility for the College
- vi. and its environment
- vii. Enhancement of college profile
- viii. Developing an environmental ethic and value systems in young people.
 - 4. Methodology

A flora is work devoted to the plants of a particular region and restricted to the major segments of plant kingdom. The aim and methods of study flora and vegetation are different. Generally, a flora deals only with native plants of the given area and provides scope for further study with interdisciplinary significance. Studies on the flora of Assam started with the observation and writings of Buch Hamilton in 1820.

GREEN AUDIT ABHAYAPURI COLLEGE, ABHAYAPURI

To study flora of Abhayapuri College, at first, all the secondary data required for the study was collected from various sources, like concerned departments of the college, students, teachers & all other staffs. The methodology of present study is basically based on onsite visits and personal observations. Depending upon the observations and data collected, interpretations were made. College records and documents were verified several times to clarify the data received through survey and discussions.

Fig 1: Data collection by green campus audit team along with students of Botany

Fig-2: Onsite Visit by Audit team in the college crop field, Bamungaon

The college and its premises were visited and analysed by the floral audit-team several times to gather information. Students of department of botany along with floral audit team took part in the data

collection of green auditing. The plant species of college campus including all three (College building, hostel and Bamungaon) were identified, trees were counted and data was tabulated. The audit team worked together, under the leadership of the lead auditor, to ensure completion with the brief and scope of the audit.

4. FINDINGS AND OBSERVATIONS:

After successful completion of site visiting, the audit team has indentified important plant species from all three campus and plants were documented below.

Table-1: LIST OF PLANT SPECIES (MOSTLY HERB) IDENTIFIED DURING GREEN CAMPUS AUDITING

Sl.	Name of Plant Species	Family Name	No. of each
No.	_		species
	Angiosper	ms	
1	AcmellapaniculataWall.ex DC.	Asteraceae	Numerous
2	Ageratum houstonianumMill	Asteraceae	Numerous
3	<i>A. conyzoides</i> L.	Amaranthaceae	Numerous
4	Actinidia deliciosa A. Chev.	Actinidiacea	One
5	Alternanthera philoxeroides (Mart.)	Asteraceae	Numerous
6	A. sessilis(L.) R. Br. Ex DC	Asteraceae	Numerous
7	AxonopuscompressusL.	Poaceae	Numerous
8	Aervasanguinolenta(L.) Blume	Amaranthaceae	Numerous
9	Amaranthus viridis	Amaranthaceae	Numerous
10	A tricolor	Amaranthaceae	Numerous
11	A spinosus	Amaranthaceae	Numerous
12	Caladium bicolor(Aiton) Vent.	Araceae	Numerous
13	Cestrum nocturnum L.	Solanaceae	Numerous
14	citrus maxima Merr.	Rutaceae	Numerous
15	Cleome gynandra	Cleomaceae	Numerous
16	Cleome rutidospermaDC.	Cleomaceae	Numerous
17	Commelina communis L.	Commelinaceae	Numerous
18	crotalaria junceaL.,	Leguminaceae	Numerous
19	Desmodiumtriflorum(L.) DC.	Papilionaceae	Numerous
20	Dentelle repens (L.) J.R.Forst.	Rubiaceae	Numerous
21	Drymaria cordata (L.) Willd.exSchult	Caryophyllaceae	Numerous
22	dypsislutescensH. Wendl.	Arecaceae	Numerous
23	<i>Ecliptaprostrata</i> L.	Asteraceae	Numerous
24	Euphorbia hirtaL.	Euphorbiaceae	Numerous
25	<i>Evolvulusnummularius</i> (L.) L.	Convolvulaceae	Numerous
26	Heliotropium indicum L.	Boraginacea	Numerous
27	Ixora chiinensis Lam.	Rubiaceae	Numerous
28	Ixora finlaysonianaWall. ex G.Don.	Rubiaceae	Numerous
29	<i>justicia gendarussa</i> Burm.f.	Acanthaceae	Numerous
30	kalanchoe pinnata (Lam.) pers.	Crassulaceae	Numerous

21		T :	NT
31	Leucus aspera (willd.) Link	Lamiaceae	Numerous
32	Leonurus sibiricus L.	Lamiaceae	Numerous
33	Lippia alba L.	Asteraceae	Numerous
34	Melastomamalabathricum L.	Melastomataceae	Numerous
35	Mimosa pudica L.	Fabaceae	Numerous
36	Ocimumgratissimum L.	Lamiaceae	Numerous
37	Ocimum sanctum L.	Lamiaceae	Numerous
38	Oxalis corniculate L.	Oxalidaceae	Numerous
39	Oxalis debilis	Oxalidaceae	Numerous
40	Paspalum conjugatum Berg.	Poaceae	Numerous
41	P scorbiculatum L.	Poaceae	Numerous
42	Persicaria chinensis	Polygonaceae	Numerous
43	Persicaria hydropiper	Polygonaceae	Numerous
44	Phyla nodiflora (L.) Greene	Verbinaceae	Numerous
45	Plectranthusscutellarioides	Lamiaceae	Numerous
46	Polygonum orientalis	Polygonaceae	Numerous
47	Pulmonaria obscura Dumort.	Boraginaceae	Numerous
48	Ravenia spectabilis Engl.	Rutaceae	Numerous
49	Rungia parviflora	Acanthaceae	Numerous
50	RungiaPectinata (L.) Ness	Acanthaceae	Numerous
51	Senna alata	Caesalpinaceae	Numerous
52	Senna occidentalis (L.) Link	Caesalpinaceae	Numerous
53	Sida cordifolia	Malvaceae	Numerous
54	Sidarhombifolia L.,	Malvaceae	Numerous
55	Solanum nigrum	Solanaceae	Numerous
56	Stellaria media (L.) Villars	Caryophyllaceae	Numerous
57	syzygiumcumuni L.	Myrtaceae	Numerous
58	syzygiumjambos L. (Alston)	Myrtaceae	Numerous
59	Teucrium scorodonia L.	Lamiaceae	Numerous
60	Tradescantia pallida (Rose) D.R. Hunt	Commelinaceae	Numerous
61	Verninia cinerea (L.)	Asteraceae	Numerous
62	Veronica serpylifolia L.	Plantaginacea	Numerous
63	Zea mays	Poaceae	Numerous
	Gymnospe		·
64	Araucaria Araucana	Araucariaceae	2
65	Cycas sp.	Cycadaceae	6
66	Pinus kesiyaRoyleex Gordon	Pinaceae	2
67	Thuja orientalis	Cupressaceae	2
	Pteridophy		1
68	Pteris vittata	Pteridaceae	Numerous
69	Pteris multifida	Pteridaceae	Numerous
70	Diplazium esculentum	Athyriaceae	Numerous

Local Name	English Name	Scientific Name	Family	No. of species
1. Devdaru	Indian Mast Tree	Polyalthia longifolia (Sonn.) Thw.	Annonaceae	49
2. Devdaru (Pendula)	Indian Mast Tree	Polyalthia longifolia var. pendula (Sonn.) Thw.	Annonaceae	4
3. Australian Acacia	Ear Leaf Acacia	Acacia auriculiformis Benth.	Mimosaceae	2
4. Radhasura	Peacock Flower	<i>Caesalpinia pulcherrima</i> (L.) Sw.	Caesalpiniaceae	5
5. Arjun	Arjun	<i>Terminalia arjuna</i> (Roxb. ex DC.) Wight & Arn.	Combretaceae	2
6. Chaitan	Indian Devil Tree	Alstonia scholaris (L.) R. Br.	Apocynaceae	3
7. Bottlebrush	Crimson Bottlebrush	<i>Callistemon citrinus</i> (Curtis) Skeels	Myrtaceae	4
8. Rupahi	Silver Oak	<i>Grevillea robusta</i> A.Cunn. ex R.Br.	Proteaceae	1
9. Araucaria	Star Pine	Araucaria heterophylla (Salisb.) Franco	<i>Araucariaceae</i> (Gymnosperm)	2
10. Kadam	Kadam	Anthocephalus cadamba (Roxb.) Miq.	Rubiaceae	4
11. Sirish	Rain Tree	Samanea saman (Jacq.) Merr.	Mimosaceae	4
12. Aam	Mango	Mangifera indica L.	Anacardiaceae	3
13. Bogori	Indian plum	Ziziphus mauritiana Lam.	Rhamnaceae	4
14. Sojina	Horseradish tree	Moringa oleifera Lam.	Moringaceae	2
15. BogiKoroi	White Sirish	Albizzia procera(Roxb.) Benth	Mimosaceae	3
16. Gamari	Beechwood	Gmelina arborea Roxb.	Verbenaceae	4
17. Eucalyptus	Eucalyptus	Eucalyptus maculata Hook.	Myrtaceae	1
18.Krishnasura	Royal Poinciana	Delonix regia (Hook.) Raf.	Caesalpiniaceae	4
19. Ghora Neem	Indian Lilac	Melia azedarach L.	Meliaceae	5
20. Mahogony	West Indies Mahogany	Swietenia mahagoni(L.) Jacq.	Meliaceae	1
21. Nageswar/ Nahor	Indian rose chestnut	Mesua ferrea L.	Clusiaceae	2
22. Titasap	Champak	Michelia champaca L.	Magnoliaceae	1
23. Aamlokhi	Indian gooseberry	Phyllanthus emblica L.	Euphorbiaceae	4
24. Narasingha	Curry Tree	Murraya koenigii (L.) Spreng.	Rutaceae	2
25. Dalim	Pomegranate	Punica granatum L.	Punicaceae	1
26. Ponial	Indian plum	<i>Flacourtia cataphracta</i> Roxb. ex Willd.	Flacourtiaceae	1
27. Paharia Odal	Buddha Coconut	Pterygotaalata(Roxb.) R. Br.	Sterculiaceae	1
28. Khokon	-	Duabanga grandiflora (DC.) Walp.	Lythraceae	1
29. Khoksa	Fig Tree	Ficus hispidaVahl.	Moraceae	2
30. Ritha	Indiansoapberry	SapindusmukorossiiGaertn	Sapindaceae	1
31. Goborhuta (Babla)	Glue berry/ Indian cherry	Cordia dichotomaG. Forster	Boraginaceae	1
32. Burikhojo	Koda tree	<i>Ehretia acuminate</i> (DC.)R.Br.	Boraginaceae	2
33. Koroch	Indian beech	Pongamia pinnata (L.) Pierre	Fabaceae	3

Table-2:List of Trees in the Abhayapuri College Campus (Including College building, Hostel & Auditorium)

34. Sama Ironwood		Senna siamea(Lam.) H.S Irwin Barneby	Fabaceae	2
35. Teteli	Tamarind	Tamarindus indiaL.	Caesalpiniaceae	2
36. Polash	Flame-of-the- forest	Butea monosperma(Lamk.) Taub	Papilionaceae	1
37. Paharia odal	Buddha's Coconut tree	Pterygotaalata(Roxb.)R. Br.	Malvaceae	1
38. DuleeChampa	Evergreen magnolia	Magnolia grandiflora L.	Magnoliaceae	1
39. Sajina	Moringa	Moringa oleifera Lam.	Moringaceae	5
40. Bokul	Bullet wood	MimusopaelengiL.	Sapotaceae	1
41. OuTenga	Elephant apple	Dillenia indica L.	Dilleniaceae	1
42.Senduri gos	Annato	Bixa orellaL.	Bixaceae	1
43. Bogipoma	White Cedar	ChukrasiatabularisA. Juss	Meliaceae	1
44.Golabjamun	Rose Apple	Syzygiumjambos(L.) Alston	Myrtaceae	2
45. Kodom	Burflower tree	Neolamarckiacadamba (Roxb.)Bosser	Rubiaceae	2
46. Bogori	Indian Palm	Ziziphus jujuba Mill.	Rhamnaceae	3
47. RobabTenga	Pomelo	Citrus grandis (L.) Osbeck	Rutaceae	5
48. Leteku	Burmese grape	BaccaurearamifloraLour	Phyllanthaceae	1
49. Kolajam	Black Palm	Syzygiumcumini(L.) Skeels.	Myrtaceae	2
50. Segun	Teak	Tectona grandis L.f.	Lamiacaea	103
51. Sama	Kassod tree	Senna siamea (Lam.) H.S IrwinBarneby	Fabaceae	3
52. Koros	Pongameoiltree	Pongamia pinnata (L.) Pierre	Fabaceae	2
53. Jolpai	Olive	Elaeocarpus floribundusBlume	Oleaceae	1
54. Silikha	Tropical almond	Terminalia chebulaRetz.	Combretaceae	1
55.Madhuriam	Guava	Psidium guajava L.	Myrtaceae	4
56.Poma	Mountain.Cedar	Toona ciliate M.Roem.	Meliaceae	1
57.Bohera	Bahera	<i>Terminalia belirica</i> (Gaertn.)Roxb.	Combretaceae	1
58. Kordoi	Star fruit	Averrhoa carambola L.	Oxalidaceae	1
59. Agaru	Agarwood	Aquilaria malaccensisBenth.	Thymelaeaceae	2
60. Sal	Sal tree	ShorearobustaGaertn.	Dipterocarpaceae	1
61. Palash	Bastard teak	Butea monospermaL.	Fabaceae	1
62.Sotian	Blackboard tree	AlstoniascholarisL.	Apocynaceae	2
63.Neem	Neem	Azadirachta indica A.Juss.	Meliaceae	5
64.Leechu	Litchi	Litchi chinensis Sonn.	Sceaeapinda	1
65.Narikol	Coconut	Cocos nucifera L.	Arecaceae	2
66. Tipugos	Tipu tree	Tipuanatipu (Benth.) Kuntze	fabaceae	1
			Total	292

PHOTO PLATE- 1

Pongamia pinnata (L). Pierre

Sidarhombifolia L.

Acmellapaniculata Wall. Ex DC.

Plumonaria obscuraDumort.

Oxalis corniculate L.

Ageratum houstonianum Mill.

Commelina communis L.

Phyllanodiflora(L.) Greene

Cestrum nocturnum L.

PHOTO PLATE- 2

Alternanntherasessilis L.

Cleome rutidosperma DC.

Leucus aspera (Wild.) Link

Melastomamalabathricum L.

Heliotropium indicum L.

Desmodiumtriflorum (L.) DC.

Euphorbia hirta L. Tradescantia pallida (Rose)Hunt Evolvulusnummularius(L.) L.

Photo Courtesy: Trishna R. Prodhani

A number of green initiatives are taken by Abhayapuri college. Plantation activity is conducted every year on 5th June i.e. World Environment Day. Students of various departments like botany, NCC and NSS students make the plantation and nurturing programmes successful. The Botany Department has a small garden containing many ornamental and medicinal plants.

5. FAUNAL (ANIMAL) AUDIT

Introduction

"Biological diversity is the variety of living organisms found on earth. According to Wilcox's "Biological diversity is the variety of life forms at all levels of biological systems (i.e., molecular, organism, population, species and ecosystem). It may be classified as genetic diversity, species diversity and ecological diversity.

India is considered as mega biodiversity region because 7-8% of the species in the world are recorded here. Further, the state Assam is located within the Eastern Himalayan Biodiversity Region, one of the two biodiversity "Hot Spots" in the country. The climatic condition, geographic location and its diverse ecosystem, help to abundant growth of a number of plant communities, which harbor large numbers of animal species from lower invertebrate to higher mammalian species.

Abhayapuri, the head quarter of the North Salmara subdivision, is a small town and is located 21 km far away from Bongaigaon District of Assam. The town is recognized as "Debadaru Nagari" as the town is covered by Debadaru plants. This town is surrounded by natural hills, forests and wetlands, which enhance the natural beauty of the place and make the region a habitat for different plants and animals.

All living organisms play an important role in conservation of nature. It would not be possible to maintain ecosystem balance without the healthy growth of the living organisms. All the animals are part of a food chain and if any one of them will be extinct, automatically the chain will break down causing environmental problem. Further, they provide us food, medicines, and other essential commodities for livelihood. Animals also help to maintain the Earth's natural environments by predating upon plants and other animals, pollinating various plants and exhaling carbon dioxide, which green plants use for photosynthesis. Moreover, animals help to fertilize plants by their droppings, which provide nutrition for plants, and seed-dispersal tendencies, which help plants to disperse through habitats. After the death of the animal, they provide food for microorganisms and supplemental minerals for plants.

Aim of the Audit

Animals are the integral part of the ecosystem and their abundance reflects the health of the ecosystem. But it has been observed that very few scientific works have been carried out to record the faunal diversity of the areas. Therefore, this work is undertaken to record the faunal diversity in the Abhayapuri College Campus.

Audit Area

The study was carried out in the Abhayapuri College Campus. Abhayapuri College is situated in the heart of Abhayapuri Town. This college has three different campuses; one is main campus, situated in the middle of the town. The other two are Stadium and Hostel Campuses (Boys' and girls'), located at the Sahitya Sabha path, Abhayapuri. All the campuses are rich with varieties of flora and fauna.

Objectives

- 1. To identify the animal species found in the three different campuses of the college.
- 2. To prepare the database of the different fauna.

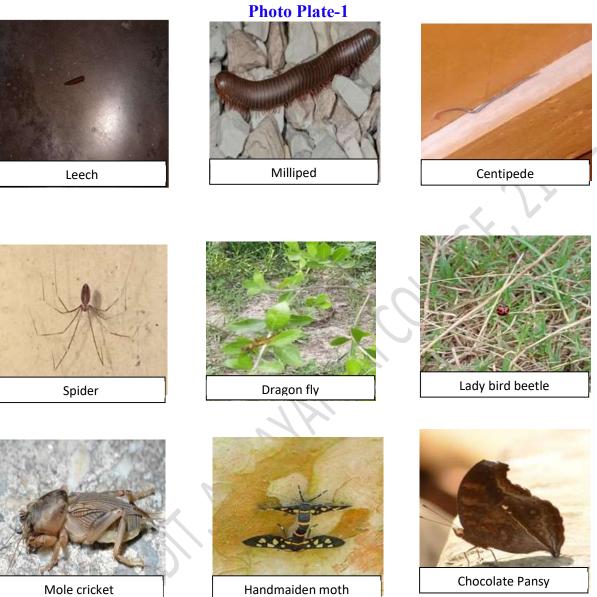
Methodology

The study was carried out primarily by following survey method in the fields. Photographs were taken for identification purpose. Secondary data was also collected by using literatures and different internet journals and references.

Findings

In the present study 108 number of animals were identified in the study sites belonging to different phylum and class. Among them highest number of Arthropods were recorded belonging to three different classes. After continuous visits, it is observed that the campuses of Abhayapuri college is rich in faunal biodiversity. All the campuses are very beautiful with large number of natural vegetation, which enrich the animal species. There are 5 nos of annelida, 49 species of Arthropods and 3 nos of Mollusca species were recorded belonging to invertebrate. 3 nos of amphibia and 11 nos of reptiles were identified. 26 birds are identified in the three sites. Mammalian diversity is represented by 9 species, where golden langur, an endangered species of Assam also is observed in the Bamungaon site as this site is very adjacent to Bamulgaon hill. Recorded animals are listed in the **table-1**.

Sl No	Phylum	Class	Common Name	Scientific name
	Invertebtara			
1		Clitellata	Leech	Hirudinariamanillensis
2		Clitellata	Leech	H. granulosa
3	Annelida	Clitellata	Earth worm (Pheretima)	Pherotimaprostuta
4		Clitellata	Earthworm	Eudriluseuginiae
5		Clitellata	Bonda kechu	Metaphirehouletti
6		Diplopoda	Milliped	Trigoniuluscorallinus
7		Chilopoda	Centiped	Rhysida nuda emarginata
8		Chilopoda	Centiped	Scutigeracoleoptrata
9			Spider	Telamoniadimidiata
10		Arachnida	Spider	Hyllus semicupreus
11			Signature spider	Argiope pulchella
12			Drosophila	Drosophila melanogaster
13				Culex quinquefasciatus
14			Mosquito	Aedes spp
15				Anopheles spp
16			Dragon fly (common hooktail)	Paragomphuslineatus
17			Dragon fly (wandering glider)	Pantalaflavescens
18			House fly	Musca domestica
19	Arthropoda		Scorpio	Heterometrusspp
20	Arunopoua	Turneta	Cockroach	Periplanta americana
21		Insecta		P orientalis
22			Ant	Formica spp


23				Solenopsis
24			Weaver ant	<i>Oecophyllasmaragdina</i>
25			Ant	Myrmicariabrunnea
26			Termite	Isoptera spp
20			Hornet	Vespa affinis
28			Vespa	Vespa orientalis
28				Harmonia axyridis
30			Ladybug beetle	Micraspisdiscolor
31				Coccinella species
32			Fire fly	Photurislucicrescens
32 33			Fire fly	Lampridaespp
				· · · · · · · · · · · · · · · · · · ·
34			Honey bee	Apis indica
35			D 1 1	Apiscerna
36			Red slug caterpillar	Eterusiaaedea
37			Praying mantis	Mantis religiosa
38			House Cricket	Acheta domestica
39			Mole cricket	Gryllotalpa brachyptera
40			Grass hopper	Ducetia japonica
41			Grass hopper	Trigonocorypha unicolor
42			Common field grasshopper	Chorthippusbrunneus
43			Gundhi bug	Macrocheraia grandis
44			Gundhi bug	Leptocorisavericornis
45				Scarabaeus spp
46			Cow dung beetle	Carabusconvexus
47				Onthophagus species
48			Psyche	Leptosianina
49			Lemon Pansy	Junonialemonias
50			Grey Pansy	J.atlites
51			Blue Tiger	Tirumala limniace
52			Jester	Symbrenthialilaea
53			Chocolate Pansy	Jumoniaiphita
54			Common Indian crow	Euploeacora
55			Handmaiden moth	Syntomoidesimaon
56	Mollusca		Pila	Pila globusa
57	Wionusea	Gastropod	Snail	
58		Gastropod	Acatina	Cryptozonasspps Acatinafulica
38			Vertebrate	Асшпајшиса
59				Dana tiquina
59 61		Amphikia	Bamunvekuli Chuk Bhekuli	Rana tigrina
		Amphibia		Bufo melanotictus
61			Pat beng	Hyla Hanida to formation
62			Lizard	Hemidactylus frenatus
63			Oriental garden lizard	Calotes versicolor
64			Little shink	Eutropismacularia
65		Dantil:-	Common Indian shink	<i>E. carinata</i>
66		Reptilia	Spectacled cobra	Najanaja
67			Monocled cobra	Najakaouthia
68			Python	Python bivittatus
69			Common wolf snake	Lycodonaulicus
70			Indian rat snake	Ptyas mucosa
71	Chordata		Branded krait	Bungarus fasciatus
72	Choruata		Checkered keelback	Xenochrophis piscator

73			Red vented bulbul	Pycnonotuscafer
74		-	Common Myna	Acridotheres tristis
75			Jungle Myna	Acridotheresfuscus
76			Striated babbler	Turdaidesearlei
77		-	Spot belled owl	Bubo nepalensis
78		-	Crow	Corvus splendens
79			Spotted Dove	Streptopeliachiinensis
80		Aves	Asian pied starling	Gracupica contra
81			Rose ringed parakeet	Psittaculakrameri
82			White throated king fisher	Halcyon smyrnensis
83			Blue throated barbet	Psilopogon asiaticus
84		-	Grey headed wood pecker	Picuscanus
85		-	Common tailorbird	Othotomussutorius
86		-	Crimson sunbird	Aythopygasiparaja
87		-	Purple sunbird	Cinnyris asiaticus
88		-	House sparrow	Passer domesticus
89			Great Egret	Ardea alba
90		-	Asian koel	Eudynamysscolopaccus
91		-	Asian open bill stork	Anastomusoscitans
92		-	Black drongo	Dicrurusmacrocercus
93		-	Pigeon	Columbia livia
94			Yellow wattled lapwing	Vanellusmalabaricus
95			Chestnut tailed starling	Sturniamalabarica
96			Black hooded oriole	Oriolusxanthornus
97		-	Oriental magpie robin	Copsychussaularis
98			Indian white eye	Zosteropspalpebrosus
99		=	Asian Brown Flycathcher	Muscicapadauurica
100	F		Assamese macaque	Macaca assamensis
101			Golden langur	Trachypithecus gee
102			Squirrel	Scicurus carolinensis
103			Schrew	Suncus murinus
104		Mammalia	Rat	Rattus norvegicus
105		XV	Bat	Pipistrellus coromandra
106			Mouse	Mus musculus
107			Mongoose	Herpestededwadsii
107		J	Indian fox	Velpes bengalensis

Table No: 1: Identified animals' species of the study sites

Remarks

The present study revealed that these areas are rich habitat of the animals from Invertebrate to mammalian species. The animals of the sites play a very important role in biodiversity conservation. Different insect and animal species having medicinal property may be used as a nutritious food and butterflies play an important role in pollination of plants. Butterflies are also considered as bioindicator. All the animals have aesthetic important and help in the growth of the revenue of the state. Considering all the importance, further extensive study will be required.

Mole cricket

PLATE-2

PLATE-3

Black Drongo

Common Myna

Indian White eye

PLATE-4

Recommendation

- 1. The study is a pioneer study from the department of Zoology. It is recommended to carry on this type of research work yearly for the identification of the available species in the campus.
- 2. Student's engagement is also very necessary to develop the academic skill of the students.
- 3. Hands on training and workshop will be arranged by the department for the taxonomic view point.
- 4. Good quality camera and binocular will be made available in the department.
- 5. Extensive plantation should be done to maintain environment friendly habitat for the animals.
- 6. Maintenance of flower garden is very essential for the nourishment of butterflies and other insects like bees.

6. Health Audit

To explore the knowledge, practices and sources of information regarding chronic diseases, physical and mental stress, health and hygiene within the college campus a set of questionnaire is prepared separately for all the employees (teaching & non-teaching including sanctioned and contractual) and Degree students of the college and distributed among all through google form. A total of 700 students and employees were targeted for the study.

Objectives: The following Objectives were undertaken for the study-

- 1. The aim of the Health Audit is to identify common health issues of the employees and students of the college.
- 2. To examine illicit substance use in eating and knowledge of nutritional requirements for health among the college students and employees.
- 3. To study the physical and mental stress related to academic load.
- 4. To find out the prevailing practices for menstrual hygiene among girl students and employees of the college.
- 5. To find out what improvements could be made to the existing facilities in the college that would encourage the students and employees to use them more.
- 6. To suggest short term and long term preventive measures to overcome health related emergency situation in the college by the authority.

Out of 700 Questionnaire50 employees and 545 students of Abhayapuri College have responded to the questions we have distributed. The following are the facts received by monitoring the responses – **Data Analysis of Employees of the college**

Sl	Category of Study	50 (Male : 36, Female : 14)
No	, CP '	
1	Health	Out of 50 responses
	Issues(chronic	1. 38% of respondents are suffering from Gastritis, 15% suffering
	disease)	from Back pain, 20% from Skin Disease, 12% from High
		Blood pressure, 10% in Low Blood Pressure and Stomachache,
		8% from Diabetes, 6% from Heart Diseases and Migraine 4%
		from Arthritis etc.

		 Out of Physical disabilities mentioned in the questionnaire, 14% of the employees of college have poor visual impairments.
2	Physical /mental	A. Physical stress:
	stress and working	Due to excessive use of ICT equipments and other electronics
	Environment in the	for official purpose, few of them face severe headache,
	College.	Backpain and mental stress.
		B. Working Environment:
		1. 58% of the respondents are able to cope up with the amount
		and complexity of work in the college while 42% are not able
		cope up due to various reasons.
		2. 52% of respondents agree that there is a two-way good
		communication/Relationship in the college among the authority and employees.
		3. 67% of employees states that there is supportive
		environment from the authority and they feel valued for the
		work they does and are able to acknowledge problems and
		ask for any kind of help.
3	Health and	A. Illicit Addiction use
	Hygiene	1.8% of employee respondents are addicted to smoking cigarette,
		4% in drinking alcohol, 4% in consuming Tobacco. Most of
		the employees keep themselves out of the mentioned
		addictions in the questionnaire.
		B. Menstrual Hygiene:
		1. All the female respondents use sanitary pad during
		Menstruation and dispose pads either in dustbins or in
		toilets.
4	Healthy Eating	1. 30% of college employees responded that the college has free
		drinking water facility in the campus.

		2. 22% responds that there are ssuitable facilities for hand-	
		washing in the campus before eating anything.	
		3. Only 6% responds that there is canteen facility in the campus.	
5	Physical Activities	A. Physical Activities:	
	and Interested	Students practice physical activities like walking, jogging, running,	
	Health Topics of	practicing yoga, bi-cycling, involvement in sports, gardening etc. to	
	Employees	keep themselves healthy and fit.	
		1. The study shows that out of the above mentioned physical	
		activities 52% of employees are Walking/Jogging/Running on	
		daily basis. 28% does yoga practice 20% are cycling everyday,	
		16% are in interested in sports etc.	
		2. 36% of respondents agree that due to heavy work schedules	
		they are not able to exercise fully to keep themselves fit.	
		Financial limitations also stand as a barrier in maintaining good	
		health.	
		3. 80% of employee agrees that the organization actively	
		encourage them to participate in its health promotion	
		programmes.	
		o///	
		B. Health Topics of Interest:	
		The college employees are interested in the following Health Topics	
		mentioned below.	
		1. Physical Activity/Fitness=58%	
		2. Healthy Eating=50%	
	19.	3. Weight Management=36%	
		4. Disease Management=16%	
		5. Preventative screenings=10%	
		6. Smoking Cessation=8%	
		7. Complementary and Alternative Therapies=4%	

6	Improvements to	In order to encourage teaching -learning environment in the class, the
	the existing	following facilities provided by the college authority must be
	facilities in the	improved.
	college.	1. 76% out of studied populations states that Cleanliness must be
		maintained within the college campus or in the class.
		2. 48% of employees say that toilets must be cleaned everyday and
		there should be proper running water.
		3. 38% states that Seating arrangements in Departments/Office
		Rooms/Common rooms requires improvement.
		4. 20% of female employees would like the college authority to
		install Incinerators/Vending machine in Toilets for waste
		disposal pads.
7	Availability of	The employees have responded as mentioned below regarding the
	communication	availability of communication channels to promote physical activity-
	channels in your	1. E-mail= 47%
	workplace to	2. Intranet=23%
	promote physical	3. Weekly e-notices=2%
	activity	4. Notice Boards Displays/Signs=29%
		5. Training=12%
8	Availability of	As per the response of the employees there is no proper written
	written policies of	policies stating the health issues in the college in regard to health and
	Health issues	safety, healthy eating, physical activity, stress in the workplace,
		work-life balance eg-flexible working and family-friendly practices,
		drugs and alcohol in the workplace etc.
9	Facilities to handle	There is no such measure or facilities to handle emergency situation
	Emergency	related to health in the college.
	situation related to	
	health	
10	Safety measure	1. 70% of responded stated that they are being provided sanitizer
	facilities adopted	in the college. Moreover, 36% respondents say that there is a

by the college to	provision of thermal scanning for the employees and students
prevent Covid-19	of the college.

Data Analysis of student respondents

Sl	Category of Study	Total Response: 545 (Male : 230, Female : 315)
No		
1	Health issues	Out of 545 responses
	(chronic disease)	1. 20% students' respondents are having Gastritis problem,
		14% are suffering from skin disease, 10% from Dental
		problem, 6% are having Headache problem and others
		have some other chronic disease as mentioned in the
		questionnaire.
		2. Majority of the students have no physical disability.
		However 2.6% students are having Poor Visibility
2	Physical and	A. Physical stress:
	mental stress	Students come to college by different means of communication.
		So Depending on the distance covered, students get physical
		stress.
		1. 51% come on foot, 25% come by bicycle,
		18% by Motor bike/Scooty and 6% come
		by car/van/bus etc.
		B. Mental Stress:
		1. 60% of students do not feel stress while studying but 40%
		feel stress.
\mathbf{C}		2. 80% students feel free in communicating
	D.	with their teachers in the college while
		40% do not feel free with their teacher.
		3. In using ICT in the classes, 74% of
		students are able to cope up with the ICT

		 based teaching and 26% find it difficult either to follow or due to various reasons. 4. The study also shows that some students has felt stressed and undergone extreme depression and thought for committing suicide. The reason behind this depression- Financial situation 10% and family problems 7%. 5. 5% of the study even responded that they 						
		have						
		Faced sexual harassments which led to mental stress.						
3	Health and	A. Use of Illicit substance within the College campus:						
	Hygiene	\mathcal{O}^{*}						
		1. 94% of students are not addicted to any addiction. 2%						
		mentioned about consuming Tobacco and 2% in drinking						
		alcohol.						
		B. Menstrual Hygiene:						
		Out of 315 female respondents-						
		1. 65% of girl's students use commercial Sanitary Pads, 18%						
		use reusable and washable cloth pads and very few						
		countable students use Tampoons and Menstrual cups						
		during menstruation.						
		2. In regard to disposal wastes during menstruation only						
		19% use Incinerator/Vending Machine in college Girls						
		common room/toilets. 28% of girls student use dustbin						
	~~	and 25% use toilet to dispose their used pads.						
)	3.						
4	Healthy Eating	1. 48% of students stated that the college provides Free						
		Drinking facility to them within the college campus. 6% of						
		students agrees that they have canteen within the college						

	and 5% says that there is hand washing facility in the
	college before they eat anything.
	2. In regard to idea about balanced diet 66% of the students
	are not aware of the balanced diet to be followed to be
	healthy and fit.
Activities,	A. Physical Activities:
Interested Health	Students practice physical activities like walking, jogging,
Topics of students	running, practicing yoga, bi-cycling, involvement in sports,
	gardening etc. to keep themselves healthy and fit.
	4. The study shows that out of the above mentioned physical
	activities 20% of students are Walking/Jogging/Running
	on daily basis. 11% are cycling everyday, 7% does yoga
	practice, 4% are involved in gardening and only 3% of the
	students are interested in sports activities.
	B. Health Topics of Interest:
	The College students are interested in the following Health Topics
	mentioned below.
	8. Healthy Eating=28%
	9. Physical Activity/Fitness=23%
	10. Weight Management=3%
	11. Preventative screenings=0.8%
	12. Disease Management=0.8%
Improvements to	In order to encourage teaching –learning among the students in the
the existing	class, the following facilities provided by the college authority
facilities in the	must be improved.
college.	1. 13% of the students out of studied populations states that
	Cleanliness must be maintained within the college campus
	or in the class.
	2. 7% states that Seating arrangements in the class and
	campus needs improvement
	Interested Health Topics of students

GREEN AUDIT ABHAYAPURI COLLEGE, ABHAYAPURI

		3. 6% of students say that toilets must be cleaned everyday
		and there should be proper running water.
		4. 3% of girls students states that awareness programmes on
		use of Incinerators (Disposal machine for Menstruation
		Pads) must conducted on regular intervals for more usage.
7	Covid-19	1. 86% 0f students responded that the college provides safety
	Preventive	measure facilities and awareness to overcome Covid-19
	Measures	pandemic as per state and central SOP norms.

Recommendations/Suggestions:

- 1. Time to Time Preventative Screenings of life-threatening health diseases /conditions of the Employees and students of the college may be reduced.
- 2. As per study, Gastritis being more common chronic ailment in college, awareness programmes on Healthy life style, food and nutrition through seminars, classes and workshops which promotes eco-friendly living may be organised the authority at an earliest for both students and employees of the college. Health Check Up with health officials may also help respondents in this regard.
- 3. Depending on the dimensions and/or specific hazards of the workplace, Doctors, Nurses and trained occupational first aiders may be engaged.
- 4. Necessary arrangements according to the medical emergencies may be made with external doctors who are available in the case of severe emergencies in the college.
- 5. The study shows that a small size of students is suffering from mental health problems among the college students which lead to depression and anxiety. So strategies for treatment seeking students from mental health providers inside and outside the campus may be organised from time to time.
- 6. Providing health, nutrition related courses and using technology as a means to educate the new generation could be effective and used for future learning.
- 7. College canteen with nutritional foods may be served for the students and employees of the college to avoid unhealthy eating.
- 8. Awareness programmes based on prevention of drug and alcohol misuse may be organised for the students of the college. Providing students with factual information about drugs and alcohol, fear-arousal techniques designed to attract attention and frighten individuals into not using drugs may be organised through classroom lectures as well as educational pamphlets and other printed

materials, and short films that impart information to students about different types of drugs and the negative consequences of use.

- Awareness programs having police officers to discuss law-enforcement issues, including drugrelated crime and penalties for buying or possessing illegal drugs may give a better knowledge to the students in illicit use of substance and prevention.
- 10. Doctors or other health professionals may be invited to talk about the severe, often irreversible, health effects of drug use and drinking.
- 11. In order to encourage teaching –learning environment in the class, the following facilities provided by the college authority may be improved. The study shows that priority attention should be paid to Cleanliness within the college campus or in the class. Toilets must be cleaned everyday and there should be proper running water. Seating arrangements in Departments/Office Rooms/Common rooms requires improvement. Proper Lightings may be arranged in the classrooms and common rooms in the college to have proper visibility.
- 12. There is a need to provide education and equip our girl students of the college with skills regarding safe and hygienic practices in using appropriate napkinsand make them to lead a healthy reproductive life and prevent the risk for reproductive tract infections.
- 13. Awareness programmes on use of Incinerators (Disposal machine for Menstruation Pads) may be conducted on regular intervals for more usage for girls students.
- 14. New Incinerators/Vending machine in Toilets for waste disposal pads may be installed in the toilets of lady employees of the college.
- 15. Organising Fitness programmes in the colleges may result in greater productivity, reduced absenteeism, lower health care costs, and greater job satisfaction among employees and students. So the college may evolve the program which involves sports activity in colleges among staff and students, combined with regular exercise.
- 16. Gymnasium centre in the college campus may be built for conducting physical activities of the students as well as for the staff of the college.
- 17. There may be First Aid Team in the college to give first aid to handle emergency situation in the workplace. This may help those who need urgent care, or prevent further serious injury until a nurse, doctor, or another person, such as a trained emergency medical technician, can take over the situation.
- 18. Engagement of Part-time nurse in medical cell of the college may prevent chronic ailments sufferers of the college.

- 19. There may be arrangement for preventive screening tools to identify the current challenges encountered and to overcome them. Tools like. preventive screening tools like, Manometer (Blood Pressure Monitor), first aid kit, thermometer, Harmful alcohol use screening, Gas cylinder(as a supply of oxygen, nitrous oxide, carbon dioxide, etc.), Oxygen Masks and Tubes, Gauze sponge, Pulse Oximeter, Nebulizer, weighing Machine, Mobility Equipment(Wheelchairs, Crutches) etc.
- 20. In case of emergency medical situationarrangement may be made for ambulance facility to carry an emergent patient to the Hospital.
- 21. There may be enhancement in use of communication channels in your workplace to promote physical activity among the staff, students and authority of the college. Newsletter, E-bulletin boards may be published. Email and Weekly e-notices, Notice Boards Displays/Signs may be circulated widely to promote physical activities, training programmes etc.
- 22. Healthcare, policies may be set for safe and cost-effective quality care in the Institution. They help us to standardise clinical practice, test and improve our services, and achieve greater understanding and co-operation among staff.
- 23. Written Policies stating the health issues in regard to health and safety such as Preventative action, Emergency management, Smoking, Drug-free workplace, Harassment and violence, work-life balance eg-flexible working and family-friendly practices may be implemented with proper guidelines for the betterment of the students and employees

7. Renewable Energy Audit

Introduction

Renewable energy is the energy that is sustainable and is derived from a source that can supply energy endlessly. The factors underlying the choice of energy sources depends of parameters such as cleanliness, cost effectiveness, stability, efficiency and environmental effects. The world is still dependent on fossil fuels for generation of power for domestic as well as industrial uses. However, such fuels are likely to be runout due to their limited availability and extensive use. Despite of their effectivity in power production, it is not a very good choice in long run. Moreover, these fossil fuels pose a huge threat to environmental balance and are a cause of many ecological hazards. Thus, renewable energy sources are a potential alternate of the conventional energy sources.

The most popular renewable energy sources currently available are [1]:

- 1. Solar energy
- 2. Wind energy
- 3. Hydro energy
- 4. Tidal energy
- 5. Geothermal energy
- 6. Biomass energy

As far as Abhayapuri College is concern, only the solar energy appears to be feasible, considering its location, campus area and requirements. Setting up of Hydro energy, Tidal energy and Geothermal energy sources is not at all possible in the college campus as the location of the college not at all fulfill the basic requirements for setting up such energy plants. Further, the Abhayapuri College is located at a region where the flow of wind is not uniform and not unidirectional i.e. it does not satisfy the basic requirement of setting up the wind energy plants. Apart from this wind energy plants require large open area which is not available in the college. Thus, wind energy as a renewable energy source of energy in contrast of Abhayapuri College is not feasibile. The biomass developed in the college is used up in the Vermi-Compose plant available in the college. Thus, there is no sufficient biomass available in the college campus for generation biomass plant.

S. N.	Type of energy source	No. of units available	Amount of power generated	Remarks
1.	Solar energy	0	0	Feasible
2.	Wind energy	0	0	Not feasible
3.	Hydro energy	0	0	Not feasible
4.	Tidal energy	0	0	Not feasible
5.	Geothermal energy	0	0	Not feasible
6.	Biomass energy	0	0	Not feasible

Harvesting of renewable energy carried out in Abhayapuri College:

Proposed plane of harvesting renewable energy:

1. Solar Energy Harvesting:

India is a home of 1.33 billion people with per capita electricity consumption of 1075 KWh. The total electricity consumption is around 1.43 PWh (1.43×10^{15} Wh) per year. The average solar irradiance in India is around 5.97 KWh/m²/day. The average solar irradiance in the lower Assam is around 5 KWh/m²/day. The solar energy can be converted into usable electricity by using solar panels.

The most popular commercially available solar panels have the efficiency of around 15%. So, the output we can get from solar panel is around 0.89 KWh/m²/day. However, there are losses like impedance mismatch, soiling, shading, wiring, light induced degradation, inverter inefficiency, DC to AC size ratio etc. which is around 25%. This leads to usable AC output of 0.67 KWh/m²/day i.e. 245 KWh/m²/year.

Area Needed for Solar Panels:

With the present technology, we get 245 KWh of AC electricity per square meter per year from solar energy. 1 MW solar plant produces around 1570 MWh of electricity annually. Area Needed for Storage System:

In order to have one day autonomy, the total storage capacity should be around 1.43PWh/365=3.92 TWh. Considering the depth of discharge to be 50%, the needed storage capacity should be around 7.84 TWh. The typical dimension (l×b×h) of conventional 12 V-150 Ah battery is around 500 mm×188 mm×422 m and weights around 65 Kg i.e. a battery of capacity 1800 Wh requires space of 0.094 m². Total area needed to store 7.84 TWh is around 409×10^6 m² (or 409 Km²), i.e. an area of around 20 Km×20 Km. So, the storage system needed for 1 day autonomy is around 0.01% of the total land area of India. The total number of households in India is around 275 million. So, a 3.5 KW rooftop solar system is good enough to meet all the electricity demand of India and it will take only 6 m×6 m space on each roof.

Rainwater Harvesting:

India received an average annual rainfall of 34.9 mm during the period 01-03-2021 to 18-04-2021 against the normal annual average rainfall of 52.4 mm which is lower by 33% against normal annual rainfall according to India Meteorological Department, Ministry of Earth Science, Government of India. According to the report, the average annual rainfall in Assam during the period was 93.6 mm against the normal annual average rainfall of 169.2 mm which is lower by 45%. However, the Bongaigaon district received almost a normal average annual rainfall of 135 mm, over the above-mentioned period, against its normal annual average of 148 mm which is lower by only 9% [1].

The amount of rainfall is measured with the help of an instrument called Rain gauge. It comprises a collection container and is to be placed in an open space. The rain precipitation is measured in terms of the height of the water accumulated in the container within a predefined time and is generally expressed in millimetres. Since rain precipitation is assumed to occur uniformly around the container, the area of collection is not a factor. However, it should not be too small, neither should it be too large. Due to

spatial uniformity of rainfall, 1 mm of measured precipitation is the equivalent of 1 L of precipitated rain water volume per metre squared [2].

Rainwater harvesting (RWH) is a simple method by which rainfall is collected for future usage. The collected rainwater may be stored, utilised in different ways or directly used for recharge purposes. With depleting groundwater levels and fluctuating climate conditions, RWH can go a long way to help mitigate these effects. Capturing the rainwater can help recharge local aquifers, reduce urban flooding and most importantly ensure water availability in water-scarce zones. Though the term seems to have picked up greater visibility in the last few years, it was, and is even today, a traditional practice followed in rural India. Some ancient rainwater harvesting methods followed in India include madakas, ahar pynes, surangas, taankas and many more.

This water conservation method can be easily practiced in individual homes, apartments, parks, offices and temples too, across the world. Farmers have recharged their dry borewells, created water banks in drought areas, greened their farms, increased sustainability of their water resources and even created a river. Technical know how for the rooftop RWH with direct storage can be availed for better implementation. RWH An effective method in water scarce times, it is also an easily doable practice.

ANNEXURE-1

POWER CONSUMPTION AND BILLING DETAILS FOR 2018-19, 2019-20 & 2020-21 (UP TOFEB'21

Period of bill	Unit	Max.	PF	Rebate	Amount	Surcharge	Total
	Consm'd	deman- d	as	on	billed	on arrear	amount
	(billed) (KWh)	a recorde	per bill	power factor	(Rs)	(Rs)	(Rs)
	(11 · · · I)	d	, sin	(KWh)			
2018-19							
03-04-18 to	3396	NA	NA	Nil	29,453	610	30,063
07-05-18	(3396)						
(34 days)							
07-05-18 to	3096	NA	NA	Nil	27,429	····	27,429
06-06-18	(3096}						
(31							
days)-							
Assessed							
06-06-18 to	5793	NA	NA	Nil	50,212	4,543	54,755
03-08-18	(5793)			$\langle Q \rangle$			
(58 days)							
03-08-18 to	3096	NA	NA	Nil	26,835	6,737	33,572
03-09-18	(3096)		1	N			
(31 days)							
03-09-18 to	2996	NA	NA	Nil	26,715		26,715
03-10-18	(2996)						
(30							
days)-		~~					
Assessed	10105		274	N 711	1.55.50.4	07.051	1.04.045
03-10-18 to	18135	NA	NA	Nil	1,57,594	27,251	1,84,845
05-04-19	(18135)						
(184 days)	2(512				2 10 220	20.1.41	2 55 250
Total (2018- 19)	36512 (36512)				3,18,238	39,141	3,57,379
2019-20	\mathcal{N}						
05-04-19 to	30140	NA	NA		2,66,437	32,601	2,99,038
01-02-20	(30140)						
(302 days)							
01-02-20 to	1400	NA	0.95	14	16,644	41,948	58,592
11-03-20	(1386)				-		
(39 days)							
11-03-20 to	760	NA	NA	NA	8,993		8993
01-04-20	(760)						
(21	, ,						
days)-							
Assessed							

Total (2019- 20)	32300 (32286)			14	2,92,074	74,549	3,66,623
2020-21 (up to Feb							
01-04-20 to	3140	NA	0.85	0	32,429	13290	45,719
01-06-20	(3140)			_			-)
(61 days)							
02-06-20 to	6048.81	13.92	0.99	186.91	54,266		54,266
31-07-20	(6043.4)						
(60 days)							
01-08-20 to	3559.20	23.36	0.99	109.98	31,042	3,000	34,042
31-08-20	(3556)						
(31 days)							
01-09-20 to	2356.00	21.72	0.985	72.80	22,505	3810	26,315
30-09-20	(2353.9)						
(30 days)							
01-10-20 to	2292.00		0.984	70.82	22,269		22,269
31-10-20	(2289.9)						
(31 days)							
01-11-20 to	2002.2	20.37	0.976	61.87	20881		20,881
04-12-20	(2000.4)						
(34 days)							
05-12-20 to	1834.6	9.28	0.971	56.69	18,482	313	18,795
01-01-21	(1832.95)			O			
(28 days)							
02-01-21 to	1916.4	9.28	0.971	59.22	19,462		19,462
31-01-21	(1914.67)	1	LV.				
(30 days)							
01-02-21 to		13.72	0.922	21.23	20,346		20,346
28-02-21	(2101.81)						
(28 days)				(00 ===	a 11 505		
Total- 2020-	25210.41			639.52	2,41,682	20,413	2,62,095
21 (up toFeb'21)	(25233.03)				•		

Notes-

- Bills for the period 07-05-18 to 06-06-18 and 03-09-18 to 03-10-18 have not been found on record. The data against the bills shown are on the basis of the average consumption as per which all the bills in 2018-19 were served (as the meter was defective during the period). However, surcharge on arrear has not been shown in absence of actual record.
- 2. Bill for the period 11-03-20 to 01-04-20 has not been found on record. The data shown against the period is based on consumption calculated by deducting present meter reading of the previous bill from the previous meter reading of the next bill and amount found on the basis of prevailing tariff. The power factor, rebate/ penalty on power factor and surcharge on arrear have not been shown in absence of actual data.

GREEN AUDIT ABHAYAPURI COLLEGE, ABHAYAPURI

Abhayapuri College, Abhayapuri conducted the Ambient Air Quality test and Ambient Noise Level measurement of College Campus and College Hostel Campus on 16/03/2021 with the help of a third party namely ENVROCON, Recognized by the Pollution Control Board of Assam and MSPCB, Meghalaya. A copy of the Ambient Air Quality test and Ambient Noise Level measurement of College Campus and College Hostel Campus are enclosed below:

	Cognis , Assau	IROCON ed By m & MSPCB, Meghalay	Digh Ph: 0 E-mu	oi Stores Build oi, Assam – 78 3751-264414, 9 til: envirocon@ site: www.envi	6 171 1435008657, 88 rediffmail.com	76028672		NE'SP 1
Date	:25/	//Misc/BNG/20-21/AA-01 03/2021 Fo: Abhayapuri Colle Main Road, Abhayap (GPS - N 26°20'23.7	suri, P.O.: Abhayap		D	rder No.: Verbal ate :		
23		Δ	MBIENT AIR C	UALITY TES	T RESULTS			
1		LOCATION(S) 4	Date of Sampling	PM 2.5	PM 10	\$01	NO ₂	1
3	SI. No.	LIMIT(S) →	sampung 	(µg/m ¹) 60	(µg/m ³) 100	(µg/m ³) 80	(µg/m ¹) 90	1
: <u>()</u>	01	Near College Entrance	15.03.2021	19.4	49.3	6.4	7.2	1
1	02	Gate College Playground	15.03.2021	16.2	42.6	5.7	65	1
Chec	()	Mr. Pankaj Baroj, ENVIRG	DCON					
		Mr. Pankaj Baroi, ENVIRO						
NOTE 1.R	lesultarez		under the prevailing co	nfiltions of measures	w/iL			

Digboi Stores Building, New Market Digboi, Azsam - 786 171 Ph: 03751-264414, 9435008657, 8876028672 E-mail: envirocon@rediffmail.com Website: www.envirocon.net.in

Order No.: Verbal Date :

Report No.: ENV/Misc/BNG/20-21/N-01 Date : 25/03/2021

Report Issued To: Abhayapuri College

Main Road, Abhayapuri, P.O.: Abhayapuri, Dist.: Bongaigaon, Assam (GPS - N 26º20'23.76*, E 90º39'41.07*)

AMBIENT NOISE LEVEL MEASUREMENT RESULTS

Sl. No.	Location(s)	Date Of Measurement	Day Time Lag (dB-A)	Limit Day Time L _m (dB-A)	Night Time L _m (dB-A)	Limit Night Time L _m (dB-A)
1	Near Gollege Entrance Gate	15.03.2021	47.6	50	32.4	40
2	College Playground	15.03,2021	41.8	50	32.1	40

Checked By: Mr. Pankaj Baroi, ENVIROCON

NOTE	1. Results reported are valid at the time of and under the provaiing conditions of massarement.
	2. Results refer only to the particular parameters tested.
	3. This test report shall not be reproduced except in full, without the written permission of ENVIROCON, Digboi Stores Building, New Market, Digboi - 78617), Assam.

Core Services: Environmental Monitoring & Data Generation, EIA & EMP, Environmental Audit & Allied Environmental Management jobs Associate Services: Certification by Competent Person (CIF), NDT, Hydraulic Testing, Chartered Engineer Services etc.

GREEN AUDIT COMMITTEE

Dr. Sadananda Nath, Principal, Abhayapuri College (President)

Mr. Chintamani Dev Sarma, Vice Principal,Abhayapuri college , **(Executive President)**

Dr. Partha Pratim Baruah, Former HoD, Botany and Present Secretary of University Classes, Gauhati University, **(Supervisor)**

Dr. Subrata Sarkar, Asstt .Professor, Department of Botany, **(Joint Coordinator)**

Dr. Ashoke Kumar Das, Asstt. Professor, Department of Botany, (Joint Coordinator)

Miss. Anupama Swargiary, Asstt. Professor, Department of Zoology (Member)

Miss Trishna Roy Prodhani, Asstt. Professor, Department of Botany (Member)

Dr. Hitesh Das, Asstt. Professor, Department of Zoology (Member)

Dr. Kuleswar Singha Asstt. Professor, Department of Geography (Member)

Ranjan Choudhury Asstt. Professor, Department of Chemistry, (Member)

Dr. Mwikwm Narzary Asstt. Professor, Department of Economics (Member)

Miss. Deepsikha Gogoi, Assitt. Professor, Department of Physics

Miss. Karishma Talukdar, Asstt. Professor, Department of Chemistry (Member)

JERFORT